
American Journal of Applied Mathematics
2022; 10(4): 160-175
http://www.sciencepublishinggroup.com/j/ajam
doi: 10.11648/j.ajam.20221004.15
ISSN: 2330-0043 (Print); ISSN: 2330-006X (Online)

Algebraic Points of Degree at Most 3 on the Affine Equation
Curve y11 = x4(x− 1)4

Mouhamadou Diaby Gassama∗, Oumar Sall

Mathematics and Applications Laboratory, Faculty of Science and Technology, Assane Seck University in Ziguinchor, Ziguinchor, Senegal

Email address:
m.gassama1299@zig.univ.sn (Mouhamadou Diaby Gassama), osall@univ-zig.sn (Oumar Sall)
∗Corresponding author

To cite this article:
Mouhamadou Diaby Gassama, Oumar Sall. Algebraic Points of Degree at Most 3 on the Affine Equation Curve y11 = x4(x− 1)4.
American Journal of Applied Mathematics. Vol. 10, No. 4, 2022, pp. 160-175. doi: 10.11648/j.ajam.20221004.15

Received: May 29, 2022; Accepted: July 13, 2022; Published: August 17, 2022

Abstract: The quotients of Fermat curves Cr,s(p) are studied by Oumar SALL. Among these studies are the cases Cr,s(11)
for r = s = 1. Mamina COLY and Oumar SALL have explicitly determined the algebraic points of degree at most 3 on Q for
the cases Cr,s(11) for r = s = 2. Our work focuses on determining explicitly the algebraic points of degree at most 3 on Q on
the curve C4,4(11) which is a special case of Fermat quotient curves. Our study concerns the cases Cr,s(11) for r = s = 4. It
seems that the finiteness of the Mordell-Weil group of rational points of the Jacobien J4,4(11)(Q) is an essential condition. So
to determine the algebraic points on the curve C4,4(11) we need a finiteness of the Mordeill-Weill group of rational points of the
Jacobien J4,4(11)(Q). The Mordell-Weil group J4,4(11)(Q) of rational points of the Jacobien is finite according to Faddev. Our
note is in this framework. Our essential tools in this note are the Mordell-Weil group J4,4(11)(Q) of the Jacobien of C4,4(11)
the Abel-Jacobi theorem and the study of linear systems on the curve C4,4(11). The result obtained concerns some quotients of
Fermat curves. Indeed, the curve C4,4(11) which is the subject of our study, the set of algebraic points of degree at most 3 on Q
has been determined in an explicit way, to achieve this we have determined the quadratic points on the curve C4,4(11) on Q and
the cubic points on the curve C4,4(11) on Q.
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1. Introduction
Let C be a smooth algebraic curve defined on Q. Let K be

a field of numbers we note C(K) the set of points on C with
coordinates in K, and

⋃
[K : Q] 6 d C(K) the set of points on C

with coordinates in K of degree at most d on Q. The degree
of a point R of C algebraic on Q is defined as the degree of its
defining field on Q; in other words deg(R) = [Q(R) : Q].

In this note we will focus on the curve C4,4(11)
with affine equation y11 = x4(x − 1)4

which is a special case of quotients of Fermat curves
Cr,s(p) : yp = xr(x − 1)s, 1 ≤ r, s ; r + s ≤ p− 1
studied in [8-10]. The cases Cr,s(11) for r = s = 2 are studied

in [2]. See [1, 3, 4, 11] for other explicit examples. Indeed,
C corresponds to the curve C4,4(11). The curves Cr,s(p) are
quotients of Fp [6, 15].

We denote by J4,4(11) the Jacobien of C4,4(11) and by j(P )
the class denoted [P − P∞] of P − P∞, that is to say j
is the Jacobien fold C4,4(11) −→ J4,4(11). The Mordell-
Weil group J4,4(11)(Q) of the rational points of the Jacobien
is finite [5, 6, 12, 13]. The curve C4,4(11) in projective is
C4,4(11) : Y 11 = X4Z7(X − Z)4.Let us note P0, P1 and
P∞ the points defined by: P0 = (0, 0, 1);P1 = (1, 0, 1) and
P∞ = (1, 0, 0). It follows from the work of Gross-Rohrlich
in [6 ] ,that

⋃
[K:Q]62

C1,1(11)(K) =

{(
1

2
±
√
y11 +

1

4
, y

)
|y ∈ Q

}⋃
{ P∞ }
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In this note we determine the set ⋃
[K : Q] 6 3

C4,4(11)(K)

Our main result is the following: Theorem 1.1 The set of algebraic points of degree at most 3 on Q of the curve C4,4(11) is
given by:

⋃
[K : Q] 6 3

C4,4(11)(K) = {P0, P1, P∞} ∪ S0 ∪ S1

with

S0 =
{(
x, (αx(x − 1))

1
3

)
| α ∈ Q∗ et x is root of the equation x(x - 1) = α11

}

S1 =

{(
x,
(
α(x(x − 1))3

) 1
8

)
| α ∈ Q∗ et x is root of the equation x(x - 1) =

1

α11

}

2. Auxiliary Results

For a divisor D on C, we note L(D) the Q̄-vector space of rational functions f defined on Q such that f = 0 or
div(f) ≥ −D; l(D) denotes the Q̄-dimension of L(D).

Lemma 2.1 we have: J4,4(11)(Q) ∼= Z/11Z
Proof: According to Gross and Rohrlich ([6 ] , p. 219), we have: J4,4(11)(Q)torsion ∼= Z/11Z, and According Faddeev

[5], on a: J4,4(11)(Q)torsion ∼= J4,4(11)(Q).
Lemma 2.2 C4,4(11) : y11 = x4(x − 1)4, we have:
(i)

div(x) = 11P0 − 11P∞;

div(x− 1) = 11P1 − 11P∞;

div(y) = 4P0 + 4P1 − 8P∞.

(ii)

L(P∞) = 〈1〉 ,

L(2P∞) =

〈
1,

y3

x(x − 1)

〉
= L(3P∞),

L(4P∞) =

〈
1,

y3

x(x − 1)
,
x2(x − 1)2

y5

〉
= L(5P∞),

L(6P∞) =

〈
1,

y3

x(x − 1)
,
x2(x − 1)2

y5
,
x(x − 1)

y2

〉
= L(7P∞),
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L(8P∞) =

〈
1,

y3

x(x − 1)
,
x2(x − 1)2

y5
,
x(x − 1)

y2
, y

〉
= L(9P∞),

L(10P∞) =

〈
1,

y3

x(x − 1)
,
x2(x − 1)2

y5
,
x(x − 1)

y2
, y,

x3(x − 1)3

y7

〉

L(11P∞) =

〈
1,

y3

x(x − 1)
,
x2(x − 1)2

y5
,
x(x − 1)

y2
, y,

x3(x − 1)3

y7
, x,

〉

L(12P∞) =

〈
1,

y3

x(x − 1)
,
x2(x − 1)2

y5
,
x(x − 1)

y2
, y,

x3(x − 1)3

y7
, x,

y7

x2(x − 1)2

〉
Proof: Let x, y be the rational functions on Q given by: x(X, Y, Z) = X

Z and y(X, Y, Z) = Y
Z , which allows to give the

projective form of the curve

C4,4(11) : Y 11 = X4Z7(X − Z)4. (i)

(i) A)

div(x) = div(
X

Z
) = (X = 0) · C4,4(11)− (Z = 0) · C4,4(11)

a) For X = 0, we have Y 11 = 0; pour Z = 1 we obtain the point P0 = (0, 0, 1) with an order of multiplicity
equal to 11. Hence

(X = 0) · C4,4(11) = 11(P0). (1)

b) The same goes for Z = 0, we have Y 11 = 0;for X = 1 we obtain the point P∞ = (1, 0, 0) with an order of
multiplicity equal to 11. Hence

(Z = 0) · C4,4(11) = 11(P∞). (2)

The relations (1) and (2) give

div(x) = 11(P0) − 11(P∞).

B)

div(x− 1) = div(
X − Z
Z

) = (X = Z) · C4,4(11)− (Z = 0) · C4,4(11)

a) For X = Z, the relation (i) give Y 11 = 0.
We thus obtain the point P1 = (1, 0, 1) with an order multiplicity equal to 11. Hence

(X = Z) · C4,4(11) = 11(P1). (3)

b) For Z = 0, we have Y 11 = 0; for X = 1 We thus obtain the point P∞ = (1, 0, 0) with an order multiplicity
equal to 11. Hence

(Z = 0) · C4,4(11) = 11(P∞). (4)

From relations 3 and 4 we deduce
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div(x− 1) = 11(P0) − 11(P∞).

C)

div(y) = div(
Y

Z
) = (Y = 0) · C4,4 − (Z = 0) · C4,4.

a) For Y = 0 , we have X4(X − 1)4 = 0 when Z = 1 ; this give X4 = 0 or (X − 1)4 = 0.
Hence

(Y = 0) · C4,4(11) = 4(P0) + 4(P1). (5)

b) the equation (i) can be written as: Y 8 = X4Y −3Z7(X − Z)4

Thus Z = 0 we X = 1, we have Y 8 = 0 we obtain the point P∞ = (1, 0, 0) with an order multiplicity equal
to 8. Hence

(Z = 0) · C4,4 = 8(P∞) (6)

The relations (5) et (6) lead to the fact that div(y) = 4(P0) + 4(P1) − 8(P∞).
(ii) Resulte of (i).
Corollary 2.1 The following results are consequences of Lemma 2.
1) 11j(P0) = 11j(P1) = 0
2) 4j(P0) = − 4j(P1)
So j(P0) and j(P1) generate the same group J4,4(11)(Q) isomorphic to Z/11Z.
Thus we have J4,4(11)(Q) ∼= Z/11Z = {mj(P0), 0 ≤ m ≤ 10}.

3. Demonstration of the Theorem

3.1. Quadratic Points on C4,4(11)

Let R ∈ C4,4(11)(Q) with [Q(R) : Q] = 2. Let R1 and R2 be the conjugates of R in the Galois sense, and work with
t = [R1 + R2 − 2P∞] which is a point of J4,4(11)(Q) = {mj(P0), 0 ≤ m ≤ 10}; so t = mj(P0) with 0 ≤ m ≤ 10,
thus

[R1 + R2 − 2P∞] = mj(P0) with 0 ≤ m ≤ 10 (k)

We notice that R /∈ {P0, P1, P∞}.
1st case m = 0.

The formula (k) becomes [R1 + R2 − 2P∞] = 0.
There is a rational function f such that div(f) = R1 + R2 − 2P∞, so f ∈ L(2P∞). According to the lemma

2, we have f = a + b
y3

x(x − 1)
with a 6= 0 (otherwise one of Ri would be equal to P0) and b 6= 0 (otherwise

L(2P∞) = L(P∞)).
At points Ri we have:

a+ b
y3

x(x− 1)
= 0

⇐⇒ y3 = −a
b
x(x− 1)

⇐⇒ y =
(
−a
b
x(x− 1)

) 1
3



American Journal of Applied Mathematics 2022; 10(4): 160-175 164

On the other hand, we have:

y11 = x4(x − 1)4

⇐⇒
(
−a
b

) 11
3

(x(x − 1))
11
3 = x4(x− 1)4

⇐⇒
(
−a
b

) 11
3

(x(x− 1))
4

(x(x− 1))
−1
3 = x4(x− 1)4

⇐⇒
(
−a
b

) 11
3

x4(x− 1)4 (x(x− 1))
−1
3 = x4(x− 1)4

⇐⇒
(
−a
b

) 11
3

(x(x− 1))
−1
3 = 1

⇐⇒
(
−a
b

)11
(x(x− 1))

−1
= 1

⇐⇒ (x(x − 1)) =
(
−a
b

)11
⇐⇒ (x(x− 1)) = α11

We thus find a family of points:

S0 =

{ (
x, (αx(x − 1))

1
3

)
| α ∈ Q∗and x is the root of the equation x(x − 1) = α11

}

2nd case m = 1
The formula (k) becomes

[R1 +R2 − 2P∞] = j(P0) = (4− 3)j(P0) = 4j(P0)− 3j(P0)

According to the corollary 1 we have:

[R1 + R2 − 2P∞] = 4j(P0) − 3j(P0) = −4j(P1) − 3j(P0)

= [−4P1 + 4P∞ − 3P0 + 3P∞] = [−3P0 − 4P1 + 7P∞]

Hence

[R1 + R2 + 3P0 + 4P1 − 9P∞] = 0

There exists a rational function f such that

div(f) = R1 + R2 + 3P0 + 4P1 − 9P∞, so f ∈ L(9P∞).

According to the lemma 2, we have:
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f = a + b
y3

x(x − 1)
+ c

x2(x − 1)2

y5
+ d

x(x − 1)

y2
+ ey

We have ordP1
f = 4 hence a = b = c = d = 0 so f = ey we have e 6= 0 otherwise ordP1

f 6= 4 which is absurd. At
points Ri, we have 0 = ey hence y = 0 and therefore 0 = x4(x − 1)4 either x = 0 or (x − 1)4 = 0 we find the
points P0 and P1 which is absurd.

3rd case m = 2
The formula (k) becomes

[R1 + R2 − 2P∞] = 2j(P0) = (4− 2)j(P0) = 4j(P0) − 2j(P0)

According to the corollary 1 we have:

[R1 + R2 − 2P∞] = 4j(P0) − 2j(P0) = −4j(P1) − 2j(P0)

= [−4P1 + 4P∞ − 2P0 + 2P∞] = [−2P0 − 4P1 + 6P∞]

Hence

[R1 + R2 + 2P0 + 4P1 − 8P∞] = 0

There exists a rational function f such that

div(f) = R1 + R2 + 2P0 + 4P1 − 8P∞, so f ∈ L(8P∞).

According to the lemma 2, we have:

f = a + b
y3

x(x − 1)
+ c

x2(x − 1)2

y5
+ d

x(x − 1)

y2
+ ey

We have ordP1
f = 4 hence a = b = c = d = 0 so f = ey we have e 6= 0 otherwise ordP1

f 6= 4 wich this absurd. At
points Ri, we have 0 = ey hence y = 0 and therefore 0 = x4(x − 1)4 either x = 0 or (x − 1)4 = 0 we find the
points P0 and P1 which is absurd.

4th case m = 3.
The formula (k) becomes

[R1 + R2 − 2P∞] = 3j(P0) = (4− 1)j(P0) = 4j(P0) − j(P0)

According to the corollary 1 we have:

[R1 + R2 − 2P∞] = 4j(P0) − j(P0) = −4j(P1) − j(P0) = [−4P1 + 4P∞ − P0 + P∞] = [−P0 − 4P1 + 5P∞]

Hence

[R1 + R2 + P0 + 4P1 − 7P∞] = 0

There exists a rational function

f such that div(f) = R1 + R2 + P0 + 4P1 − 7P∞, so f ∈ L(7P∞).
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According to the lemma 2, we have:

f = a + b
y3

x(x − 1)
+ c

x2(x − 1)2

y5
+ d

x(x − 1)

y2

We have ordP1
f = 4 hence a = b = c = d = 0 so f = 0 which is absurd.

5th case m = 4
The formula (k) becomes

[R1 + R2 − 2P∞] = 4j(P0)

According to the corollary 1 we have:

[R1 + R2 − 2P∞] = 4j(P0) = −4j(P1) = [−4P1 + 4P∞]

Hence

[R1 + R2 + 4P1 − 6P∞] = 0

There exists a rational function f such that div(f) = R1 + R2 + 4P1 − 6P∞, , so f ∈ L(6P∞).
According to the lemma 2, we have:

f = a + b
y3

x(x − 1)
+ c

x2(x − 1)2

y5
+ d

x(x − 1)

y2

We have ordP1
f = 4 hence a = b = c = d = 0 and therefore f = 0 which is absurd.

6th case m = 5
The formula (k) becomes

[R1 + R2 − 2P∞] = 5j(P0) = (11− 6)j(P0) = 11j(P0) − 6j(P0)

At points Ri, we have:

[R1 + R2 − 2P∞] = 11j(P0) − 6j(P0) = −6j(P0) = [−6P0 + 6P∞]

Hence

[R1 + R2 + 6P0 − 8P∞] = 0

There exists a rational function f such that div(f) = R1 + R2 + 6P0 − 8P∞ , so f ∈ L(8P∞).
According to the lemma 2, we have:

f = a + b
y3

x(x − 1)
+ c

x2(x − 1)2

y5
+ d

x(x − 1)

y2
+ ey

We have ordP0
f = 6 hence

a = b = c = d = e = 0 so f = 0 which contradicts the fact that ordP0
f = 6 absurd.

7th case m = 6
The formula (k) becomes

[R1 + R2 − 2P∞] = 6j(P0) = (8− 2)j(P0) = 8j(P0) − 2j(P0)



167 Mouhamadou Diaby Gassama and Oumar Sall: Algebraic Points of Degree at Most 3 on the
Affine Equation Curve y11 = x4(x− 1)4

According to the corollary 1 we have:

[R1 + R2 − 2P∞] = 8j(P0) − 2j(P0) = −8j(P1)− 2j(P0)

= [−8P1 + 8P∞ − 2P0 + 2P∞] = [−2P0 − 8P1 + 10P∞]

Hence

[R1 + R2 + 2P0 + 8P1 − 12P∞] = 0

There exists a rational function f such that

div(f) = R1 + R2 + 2P0 + 8P1 − 12P∞, so f ∈ L(12P∞)

According to the lemma 2, we have:

f = a + b
y3

x(x − 1)
+ c

x2(x − 1)2

y5
+ d

x(x − 1)

y2
+ ey + e1

x3(x− 1)3

y7
+ e2x+ e3

y7

x2(x− 1)2

We have ordP1
f = 8, hence a + e2 = 0 and b = c = d = e = e1 = e3 = 0; so f = e2(x− 1) and therefore one of Ri

should be equal to P1 which is absurd.
8th case m = 7

The formula (k) becomes

[R1 +R2 − 2P∞] = 7j(P0) = (11− 4)j(P0) = 11j(P0)− 4j(P0)

According to the corollary 1 we have:

[R1 + R2 − 2P∞] = 11j(P0) − 4j(P0) = −4j(P0) = [−4P0 + 4P∞]

Hence

[R1 + R2 + 4P0 − 6P∞] = 0

There exists a rational function f such that

div(f) = R1 + R2 + 4P0 − 6P∞, so f ∈ L(6P∞).

According to the lemma 2, we have:

f = a + b
y3

x(x − 1)
+ c

x2(x − 1)2

y5
+ d

x(x − 1)

y2

We have ordP0
f = 4 hence a = b = c = d = 0 so f = 0 which is absurd.

9th case m = 8
The formula (k) becomes [R1 + R2 − 2P∞] = 8j(P0)
According to the corollary 1 we have:

[R1 + R2 − 2P∞] = 8j(P0) = −8j(P1) = [−8P1 + 8P∞]
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Hence

[R1 + R2 + 8P1 − 10P∞] = 0
There exists a rational function f such that div(f) = R1 + R2 + 8P1 − 10P∞ , so f ∈ L(10P∞).
According to the lemma 2, we have:

f = a+ b
y3

x(x− 1)
+ c

x2(x− 1)2

y5
+ d

x(x − 1)

y2
+ ey + e1

x3(x− 1)3

y7

We have ordP1
f = 8 hence

a = b = c = d = e = e1 = 0 so f = 0, which is absurd.
10th case m = 9

The formula (k) becomes

[R1 + R2 − 2P∞] = 9j(P0) = (11− 2)j(P0) = 11j(P0) − 2j(P0)

According to the corollary 1 we have:

[R1 + R2 − 2P∞] = 11j(P0) − 2j(P0) = −2j(P0) = −2[P0 − P∞] = [−2P0 + 2P∞]

Hence

[R1 + R2 + 2P0 − 4P∞] = 0

There exists a rational function f such that

div(f) = R1 + R2 + 2P0 − 4P∞, so f ∈ L(4P∞).

According to the lemma 2, we have

f = a + b
y3

x(x − 1)
+ c

x2(x − 1)2

y5

We have ordP0
f = 2 hence a = b = 0 so f = c

x2(x − 1)2

y5
we have c 6= 0 otherwise ordP0

f 6= 2 which is absurd.

At points Ri, we have 0 = c
x2(x − 1)2

y5
hence x2(x − 1)2 = 0 either x = 0 or x = 1 we find the points P0 et P1

which is absurd.
11th case m = 10

The formula (k) become

[R1 +R2 − 2P∞] = 10j(P0) = (11− 1)j(P0) = 11j(P0)− j(P0)

According to the corollary 1 we have:

[R1 +R2 − 2P∞] = 11j(P0)− j(P0) = −j(P0) = −[P0 − P∞] = [−P0 + P∞]

Hence

[R1 + R2 + P0 − 3P∞] = 0
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There exists a rational function

f such that div(f) = R1 + R2 + P0 − 3P∞,

So
f ∈ L(3P∞) and as L(3P∞) = L(2P∞)
So one of Ri should be equal to P∞ wich is absurd.

3.2. Cubic Points on C4,4(11)

Let R ∈ C4,4(11)(Q) with [Q(R) : Q] = 3. Let R1, R2 and R3 be the conjugates of R in the Galois sense, and work with
t = [R1 + R2 + R3 − 3P∞] which is a point of J4,4(11)(Q) = {mj(P0), 0 ≤ m ≤ 10}; so t = mj(P0) with
0 ≤ m ≤ 10, thus

[R1 + R2 + R3 − 3P∞] = mj(P0) with 0 ≤ m ≤ 10 (t)

We notice that R /∈ {P0, P1, P∞}.
1st case m = 0.

The formula (t) becomes [R1 + R2 + R3 − 3P∞] = 0.
There exists a rational function f such that

div(f) = R1 + R2 + R3 − 3P∞, so f ∈ L(3P∞)and asL(3P∞) = L(2P∞)

So one of the Ri should be equal to P∞ which is absurd.
2nd case m = 1

The formula (t) becomes

[R1 +R2 +R3 − 3P∞] = j(P0) = (4− 3)j(P0) = 4j(P0)− 3j(P0)

According to the corollary 1 we have:

[R1 + R2 +R3 − 3P∞] = 4j(P0) − 3j(P0) = −4j(P1) − 3j(P0)

= [−4P1 + 4P∞ − 3P0 + 3P∞] = [−3P0 − 4P1 + 7P∞]

Hence

[R1 + R2 + R3 + 3P0 + 4P1 − 10P∞] = 0

There exists a rational function f such that

div(f) = R1 + R2 + R3 + 3P0 + 4P1 − 10P∞, so f ∈ L(10P∞).

According to the lemma 2, we have:

f = a+ b
y3

x(x− 1)
+ c

x2(x− 1)2

y5
+ d

x(x− 1)

y2
+ ey + e1

x3(x− 1)3

y7

We have ordP1
f = 4 hence a = b = c = d = 0 so f = ey + e1

x3(x − 1)3

y7
; one of Ri should be equal to P0 which
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is absurd.
3rd case m = 2

The formula (t) becomes

[R1 +R2 +R3 − 3P∞] = 2j(P0) = (4− 2)j(P0) = 4j(P0)− 2j(P0)

According to the corollary 1 we have:

[R1 + R2 − 2P∞] = 4j(P0) − 2j(P0) = −4j(P1) − 2j(P0)

= [−4P1 + 4P∞ − 2P0 + 2P∞] = [−2P0 − 4P1 + 6P∞]

Hence

[R1 + R2 + R3 + 2P0 + 4P1 − 9P∞] = 0

There exists a rational function f such that

div(f) = R1 + R2 + R3 + 2P0 + 4P1 − 9P∞, so f ∈ L(9P∞) and as L(9P∞) = L(8P∞)

Therefore one of Ri should be equal to P∞ which is absurd.
4th case m = 3.

The formula (t) becomes

[R1 +R2 +R3 − 3P∞] = 3j(P0) = (4− 1)j(P0) = 4j(P0)− j(P0)

According to the corollary 1 we have:

[R1 + R2 + R3 − 3P∞] = 4j(P0) − j(P0) = −4j(P1) − j(P0)

= [−4P1 + 4P∞ − P0 + P∞] = [−P0 − 4P1 + 5P∞]

Hence

[R1 + R2 + R3 + P0 + 4P1 − 8P∞] = 0

There exists a rational function f such that

div(f) = R1 + R2 + R3 + P0 + 4P1 − 8P∞, so f ∈ L(8P∞)

According to the lemma 2, we have:

f = a + b
y3

x(x − 1)
+ c

x2(x − 1)2

y5
+ d

x(x − 1)

y2
+ ey

We have ordP1 f = 4 hence a = b = c = d = 0 so f = ey we have e 6= 0 otherwise ordP1 f 6= 4 which is absurd . At
points Ri, we have 0 = ey hence y = 0 and therefore 0 = x4(x − 1)4 either x = 0 or (x − 1)4 = 0 we find the
points P0 and P1 which is absurd.

5th case m = 4
The formula (t) becomes
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[R1 +R2 +R3 − 3P∞] = 4j(P0)

According to the corollary 1 we have:

[R1 +R2 +R3 − 3P∞] = 4j(P0) = −4j(P1) = [−4P1 + 4P∞]

Hence

[R1 + R2 +R3 + 4P1 − 7P∞] = 0

There exists a rational function f such that

div(f) = R1 + R2 +R3 + 4P1 − 7P∞, so f ∈ L(7P∞)

According to the lemma 2, we have:

f = a+ b
y3

x(x− 1)
+ c

x2(x− 1)2

y5
+ d

x(x− 1)

y2

We have ordP1
f = 4 hence a = b = c = d = 0 and therefore one of f = 0 which is absurd.

6th case m = 5
The formula (t) becomes

[R1 +R2 +R3 − 3P∞] = 5j(P0) = (11− 6)j(P0) = 11j(P0)− 6j(P0)

According to the corollary 1 we have:

[R1 +R2 +R3 − 3P∞] = 11j(P0)− 6j(P0) = −6j(P0) = [−6P0 + 6P∞]

Hence

[R1 + R2 +R3 + 6P0 − 9P∞] = 0

There exists a rational function f such that

div(f) = R1 + R2 + R3 + 6P0 − 9P∞, so f ∈ L(9P∞)

According to the lemma 2, we have:

f = a+ b
y3

x(x− 1)
+ c

x2(x− 1)2

y5
+ d

x(x− 1)

y2
+ ey

We have ordP0
f = 6 hence

a = b = c = d = e = 0 so f = 0 which contradicts the fact that ordP0
f = 6 absurd.

7th case m = 6
The formula (t) becomes

[R1 +R2 +R3 − 3P∞] = 6j(P0) = (11− 5)j(P0) = 11j(P0)− 5j(P0)
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According to the corollary 1 we have:

[R1 + R2 + R3 − 3P∞] = 11j(P0) − 5j(P0) = − 5j(P0) = [−5P0 + 5P∞]

Hence

[R1 + R2 + R3 + 5P0 − 8P∞] = 0

There exists a rational function f such that

div(f) = R1 + R2 + R3 + 5P0 − 8P∞, so f ∈ L(8P∞)

According to the lemma 2, we have:

f = a+ b
y3

x(x− 1)
+ c

x2(x− 1)2

y5

+ d
x(x− 1)

y2
+ ey

We have ordP0 f = 5, hence a = b = c = d = e = 0; so f = 0 which contradicts the fact that ordP0f = 5 absurd.
8th case m = 7

The formula (t) becomes

[R1 +R2 +R3 − 3P∞] = 7j(P0) = (11− 4)(jP0) = 11j(P0)− 4j(P0)

According to the corollary 1 we have:

[R1 + R2 + R3 − 3P∞] = 11j(P0) − 4j(P0) = −4j(P0) = [−4P0 + 4P∞]

Hence

[R1 + R2 + R3 + 4P0 − 7P∞] = 0

There exists a rational function f such that

div(f) = R1 + R2 + R3 + 4P0 − 7P∞, so f ∈ L(7P∞) and as L(7P∞) = L(6P∞)

So one of Ri should be equal to P∞ which is absurd.
9th case m = 8

The formula (t) becomes

[R1 + R2 + R3 − 3P∞] = 8j(P0)

According to the corollary 1 we have:

[R1 + R2 + R3 − 3P∞] = 8j(P0) = −8j(P1) = [−8P1 + 8P∞]

Hence
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[R1 + R2 + R3 + 8P1 − 11P∞] = 0

There exists a rational function f such that

div(f) = R1 + R2 + R3 + 8P1 − 11P∞, so f ∈ L(11P∞)

According to the lemma 2, we have:

f = a+ b
y3

x(x− 1)
+ c

x2(x− 1)2

y5
+ d

x(x− 1)

y2
+ ey + e1

x3(x− 1)3

y7
+ e2x

We have ordP1 f = 8, we must have a + e2 = 0 and b = c = d = e = e1 = 0; so f = e2(x− 1) and therefore one of
Ri should be equal to P1 which is absurd.

10th case m = 9
The formula (t) becomes

[R1 +R2 +R3 − 3P∞] = 9j(P0) = (11− 2)(jP0) = 11j(P0)− 2j(P0)

According to the corollary 1 we have:

[R1 + R2 + R3 − 3P∞] = 11j(P0) − 2j(P0) = −2j(P0) = −2[P0 − P∞] = [−2P0 + 2P∞]

Hence

[R1 + R2 + R3 + 2P0 − 5P∞] = 0

There exists a rational function f such that

div(f) = R1 + R2 + R3 + 2P0 − 5P∞, so f ∈ L(5P∞)

According to the lemma 2, we have f = a + b
y3

x(x − 1)
+ c

x2(x − 1)2

y5

We have ordP0 f = 2 hence a = b = 0 so f = c
x2(x − 1)2

y5
we have c 6= 0 otherwise ordP0 f 6= 2 ce qui est

absurde. At points Ri, we have 0 = c
x2(x − 1)2

y5
hence x2(x − 1)2 = 0 either x = 0 or x = 1 we find the points P0

and P1 which is absurd.
11th case m = 10

The formula (t) becomes

[R1 +R2 +R3 − 3P∞] = 10j(P0) = (11− 1)j(P0) = 11j(P0)− j(P0)

According to the corollary 1 we have:

[R1 + R2 + R3 − 3P∞] = 11j(P0) − j(P0) = −j(P0) = [−P0 + P∞]

Hence

[R1 + R2 + R3 + P0 − 4P∞] = 0

There exists a rational function f such that
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div(f) = R1 + R2 + R3 + P0 − 4P∞, so f ∈ L(4P∞)

And therefore

f = a + b
y3

x(x − 1)
+ c

x2(x − 1)2

y5

ordP0
f = 1 =⇒ a = 0; so f = b

y3

x(x − 1)
+ c

x2(x − 1)2

y5

b 6= 0 otherwise ordP0
f 6= 1; which is absurd.

c 6= 0 sinon f ∈ L(3P∞); which is absurd.
At points Ri, we have

0 = b
y3

x(x − 1)
+ c

x2(x − 1)2

y5
:

b
y3

x(x− 1)
+ c

x2(x− 1)2

y5
= 0

⇐⇒ y8 = −c
b
x3(x− 1)3

⇐⇒ y =
(
−c
b
(x(x− 1))3

) 1
8

On the other hand, we have:

y11 = x4(x− 1)4

⇐⇒
(
−c
b
(x(x− 1)3

) 11
8

= x4(x− 1)4

⇐⇒
(
−c
b

) 11
8

(x(x − 1))
33
8 = x4(x− 1)4

⇐⇒
(
−c
b

) 11
8

(x(x− 1))
32
8 (x(x− 1))

1
8 = x4(x− 1)4

⇐⇒
(
−c
b

) 11
8

x4(x− 1)4 (x(x− 1))
1
8 = x4(x− 1)4

⇐⇒
(
−c
b

) 11
8

(x(x− 1))
1
8 = 1

⇐⇒ (−c
b
)11x(x− 1) = 1
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⇐⇒ x(x− 1) = (−b
c
)11

⇐⇒ x(x − 1) = −(
b

c
)11

We thus find a family of points:

S1 =

{(
x,
(
α(x(x − 1))3

) 1
8

)
| α ∈ Q∗and x is the root of the equation x(x− 1) =

1

α11

}

4. Conclusion

Our note focuses on the determination of algebraic points
on the curve C4,4(11) of affine equation y11 = x4(x − 1)4.
The curve C4,4(11) is a special case of the quotients of Fermat
curves. In this note an has explicitly determined the algebraic
points of degree at most 3 on the curve C4,4(11) on Q. To do
this we determined the quadratic points and the cubic points
on C4,4(11) on Q.

It seems possible to determine explicitly the algebraic points
of any given degree on the curve C4,4(11).
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