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Abstract: The present study provides a comprehensive discussion for the problem of boundary layer flow and heat transfer 

analysis of stagnation point flow of couple stress fluid over an exponentially stretching surface. The governing equations of 

couple stress fluid model are assumed under boundary layer approach. The nonlinear partial differential equations are simplified 

by using similar similarity transformations. The analytical solutions of abridged equations are computed with the help of 

homotopy analysis method (HAM). The convergence of the HAM solutions have been deliberated by plotting ћ - curves and also 

through homotopy pade approximation. The physical features of pertinent parameters have been discussed through graphs. 
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1. Introduction 

The study of flow and heat transfer of steady and unsteady, 

compressible and incompressible, viscous and non-Newtonian 

fluids over stretching surfaces have tremendous applications 

in several physical situations such as cooling of metallic plates, 

extrusion of polymers, aerodynamic extrusion of plastic sheets, 

purification of liquefied metal from non-metallic inclusion 

and in manufacturing process of artificial films and fibers etc. 

Nazar et al. [1] have discussed the time dependent boundary 

layer flow of a non-Newtonian micropolar fluid over a 

stretching sheet, where the sheet was assumed to be stretched 

in its own plane. The porosity effects over stagnation flow and 

heat transfer of viscous fluid over a stretching/shrinking sheet 

immersed in a saturated medium has been tackled be Rosalie 

et al. [2]. Further, Nadeem and Awis [3] have examined the 

effects of temperature dependent viscosity and 

thermo-capillarity on the flow and heat transfer of a viscous 

fluid in a thin film on a horizontal porous shrinking sheet 

through a porous medium. The suction/injection effects on 

flow and heat transfer of a viscous fluid on a stretching sheet 

in a porous medium with internal heat generation or 

absorption was studied by Cortell [4]. Furthermore, Chiam [5] 

studied the problem of boundary layer flow and heat transfer 

of an electrically conducting fluid over a non-isothermal 

stretching sheet under the influence of a transverse magnetic 

field. Few other important works concerning the boundary 

layer flow and heat transfer of viscous and non-Newtonian 

fluids over stretching sheet are included in [6-10]. 

Recently, couple stress fluid model has been given a lot of 

consideration by numerous researchers in diverse physical 

circumstances. Lin [11] has inspected the linear stability 

analysis of rotor-bearing organism with couple stress fluid as 

lubricants. Zakaria [12] has measured the effects of 

magnetohydrodynamic over the problem of unsteady free 

convection flow of a couple stress fluid with a relaxation time 

through porous medium. Very recently, Nadeem and Akram 

[13] have estimated the induced magnetic field effects over the 

peristaltic flow of a couple stress fluid in an asymmetric 

channel. In another work, Lin [14] has encountered the 

problem of squeeze film characteristics of finite journal 

bearings in a couple stress fluid model. Later on, Ogulu [15] 

has examined the problem of oscillating plate temperature 

flow of a polar fluid past a vertical porous plate in the presence 



101 Ghulam Shah et al.:  Heat Transfer Analysis over the Boundary Layer Stagnation-Point Flow of Couple Stress  

Fluid over an Exponentially Stretching Sheet 

of couple stresses and radiation. The available work 

concerning the couple stress fluids are mostly in peristaltic 

flow under long wavelength approximations and couple stress 

fluid flow through finite geometry but not much work is 

available about the couple stress fluid in case of the boundary 

layer flow for infinite geometry. 

The determination of the present work is to scrutinize the 

problem of stagnation-point boundary layer flow and heat 

transfer of a couple stress fluid over an exponentially 

stretching surface. The governing equations of the problem 

are first condensed using the boundary layer theory and are 

then simplified using similar similarity variables [16-21]. The 

resulting system of differential equations is finally solved 

analytically through homotopy analysis method (HAM). The 

convergence of the HAM solutions is presented through 

graphs and also through homotopy pade approximations 

[22-26]. Further physical insight is also presented at the end. 

2. Formulation 

Let us consider the boundary layer stagnation point flow of 

a steady incompressible couple stress fluid streaming over an 

exponentially stretching surface. The coordinates ( , )x y  are 

chosen such that x  is taken along the surface of the sheet, 

while y  is assumed normal to it. The nonlinear boundary 

layer equations of conservation of mass, momentum and heat 

transfer [27-31] in absence of dissipation are 

0,x yu v+ =                   (1) 

0 ,x y yy yyyy

dU
uu vu U u u

dx

ηυ
ρ

∞
∞+ = + −        (2) 

,x y yyuT vT Tα+ =               (3) 

here ( , )u v  are the velocity components along the ( ),x y  

axes, υ  is the kinematic viscosity, U∞  is the free-stream 

velocity, 0η  is the material constant for the couple stress fluid 

ρ  is the density, T  is temperature and α  is the thermal 

diffusivity. The corresponding boundary conditions for the 

problem are 

,    0,   at 0,wu U v y= = =           (4) 

,   as  ,u U y∞→ → ∞            (5) 

2 2

2 2
0,    0,    for 0,  and also for ,

d u d v
y y

dy dy
= = = → ∞  (6) 

( ) ,   at 0,     ,   ,wT T x y T T y∞= = → → ∞     (7) 

where the free-stream velocity U∞ , the stretching velocity 

wU  and the surface temperature wT , are defined as 

/ / /,    ,    ,x L x L x L
w wU ae U be T T ce∞ ∞= = = +

   (8) 

where a , b  and c  are appropriate dimensional constants, 

and L  is the reference length. 

The significant physical measures of heat flux at the surface 

of the sheet wq  and the local Nusselt numbers Nu  related 

with the current problem are 

( )0| ,      Re 0 ,w y x x

T
q k Nu

y
θ=

∂ ′= − = −
∂

    (9) 

where 2Re / 2x U x Lν∞= . 

3. Solution of the Problem 

For homotopy analysis solution of the flow problem take 

the following similarity transformations [16]. 

/ ( ),x Lu ae f η′=                (10) 

( )1/2 /( ) ( ( )),
2

x La
v e f f

L

ν η η η′= − +        (11) 

1/2
/2,     .

2

x L

w

T T a
e y

T T L
θ η

ν
∞

∞

−  = =  −  
      (12) 

With the help of transformations ( )10  to ( )12 , ( ). 1Eq  is 

identically satisfied while ( ). 2 3Eqs −  take the form 

(5) 22 2 0,f f ff fλ ′′′′ ′′− − + − =        (13) 

Pr( 2 ) 0,f fθ θ θ′′ ′ ′+ − =         (14) 

where 0 / 2U Lλ η µν∞=  is the nondimensional couple stress 

parameter. The boundary conditions in nondimensional form 

are stated as 

( ) ( )0 0,    0 ,    (0) 0,f f fε′ ′′= = =        (15) 

1,     0,   as ,f f η′ ′′→ → → ∞        (16) 

(0) 1,    0,   as ,θ θ η= → → ∞        (17) 

where /b aε = . The homotopy analysis method is highly 

dependent about the choice of the initial guesses and the 

corresponding auxiliary linear operators taken as [32-35] 

( ) ( )
2

0 1 1 1 ,
2

f e ηηε ε η− 
= − + − − +  

 
     (18) 

0 ,e ηθ −=                  (19) 

5 4 3 2

5 4 3 2
3 3 ,f

d d d d
L

d d d dη η η η
= + + +        (20) 

2

2
,

d d
L

dd
θ ηη

= +             (21) 
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The results obtained are discussed in the next section. 

4. Results and Discussion 

The problem of the boundary layer stagnation flow and heat 

transfer of the couple stress fluid over an exponentially 

stretching surface is solved using the useful analytical 

technique homotopy analysis method (HAM). The HAM 

solutions are critically dependent upon the choice of auxiliary 

parameters ' sℏ . Figures 1-3 are framed to examine the 

convergence regions for the auxiliary parameters 1ℏ  and 2ℏ  

for velocity and temperature profiles for specified choices of 

the involved parameters. Figure 1 is sketched to observe the 

convergence region for velocity profile f ′  for 0,η =  when 

couple stress fluid parameter 2λ =  and for different choices 

of the stretching parameter ε , plotted at the 15th  order of 

approximation of the HAM solution. From Figure 1 it is 

observed that the convergence region decreases with the 

increasing deviation of ε  from 1. 

Table 1. Pade table showing the convergence of the velocity and temperature profiles for 1 2 1= = −ℏ ℏ  when 1,λ =  for ( )0 , 1θ ε′ = . 

Homotopy-Pade 

approximation 

f´´(0) Homotopy-Pade 

approximation 

ϴ´(0) 

ε = 0.75 ε = 1.25 Pr = 0.7 Pr = 2 

[1/1] 0.25266 -0.26702 [1/1] -1.33720 -1.74074 

[2/2] 0.24664 -0.25719 [2/2] -1.33518 -2.01060 

[5/5] 0.23657 -0.24931 [7/7] -1.33516 -2.25064 

[6/6] 0.23626 -0.24902 [8/8] -1.33516 -2.25384 

[9/9] 0.23600 -0.24875 [12/12] -1.33514 -2.25661 

[10/10] 0.23597 -0.24873 [13/13] -1.33514 -2.25672 

[12/12] 0.23595 -0.24870 [16/16] -1.33513 -2.25676 

[15/15] 0.23595 -0.24870 [20/20] -1.33513 -2.25676 

 

The convergence region for shrinking sheet case with 

0.25ε = −  is 10.8 0.2− ≤ ≤ −ℏ . Figures 2-3 are prepared to 

observe the convergence regions for temperature profile θ . 

Figure 2 shows the convergence regions for different values of 

stretching sheet parameter ε  and Prandtl number Pr  when 

the couple stress parameter 1,λ =  while Figure 3 contains 

the ℏ - curves for different values of the Prandtl numbers Pr  

and λ  when 0ε = . From these plots it is observed that with 

increase in both Pr  and λ  the convergence region decreases 

[36-41]. 

Table 2. Behavior of boundary derivatives for velocity profile. 

ε\λ 
f´´(0) 

0.00 0.25 0.50 1.00 1.50 2.00 

-0.50 4.98439 3.75931 2.95504 2.07307 1.66094 1.43591 

-0.25 4.56249 3.47403 2.75245 1.94818 1.56296 1.34869 

0.00 3.95760 3.03530 2.4190 1.72328 1.38388 1.19261 

0.25 3.18567 2.45701 1.96695 1.4081 1.13161 0.974332 

0.50 2.26074 1.75142 1.40703 1.01109 0.813047 0.699602 

0.75 1.19521 0.929273 0.74865 0.539593 0.434127 0.373393 

1.25 -1.08664 -0.91273 -0.77913 -0.59718 -0.48755 -0.41871 

1.50 -2.26227 -1.90365 -1.62754 -1.2502 -1.02172 -0.87759 

2.00 -4.2596 -3.73144 -3.29845 -2.65225 -2.21525 -1.91517 

3.00 -7.97091 -7.28164 -6.67904 -5.69204 -4.93754 -4.35899 

 

The influence of different involved parameters over 

velocity and temperature profiles is sketched in Figures 4-7. 

Figure 4 predicts the influence of couple stress parameter 

λ  for velocity profile f ′  when 0.5,1.5ε = . From Figure 

4 it is observed that near the surface of the sheet, velocity 

profile decreases with increase in ,λ  while velocity profile 

changes its behavior and becomes increasing with increase 

in λ  in far field from the surface when 0.5,ε =  whereas 

the observed behavior for the velocity profile for 1ε >  is 

opposite to the case of 1ε < , that is velocity profile near 

the surface of the sheet is increasing with increase in ,λ  

while in far field the observed behavior is decreasing. The 

turning point of the behavior for 0.5ε =  is nearly at 

2.5,η =  while for 1.5ε =  the point is somewhere at 

2η = . Figure 5 is framed to check the accuracy of the HAM 

solutions for the second derivative boundary conditions. 

The curves in Figure 5 are sketched for different values of 

the stretching parameter ε  and couple stress parameter λ . 

From Figure 5 it is observed that the pattern adopted is 

similar to that of velocity profile with a difference that the 

turning points in these curves are achieved much before 

then that for the curves in Figure 4 Figure 6 is included to 

check the influence of Prandtl numbers Pr  and stretching 

ratio ε  when the couple stress parameter 1.λ =  Figure 6 

inculcates that with increase in both ε  and Pr  the 

temperature profile and the thermal boundary layer 

thickness decreases. Figure 7 is graphed to examine the 

influence of λ  over temperature profile θ . From this 

figure, it is given that with increase in λ  the temperature 
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profile and the thermal boundary layer thickness increases. 

Figure 8 gives the behavior of local Nusselt numbers for 

couple stress fluid calculated for different values of 

stretching parameter ε  and local Reynolds numbers Re  

against Prandtl number Pr  at the surface of the sheet. It is 

clear that with increase in each of ,Prε  and Re ,x  local 

Nusselt numbers Nu  increases. 

To ensure convergence of the HAM solution, pade 

approximations for velocity and temperature profiles are also 

computed. Table 1 covers the pade approximation values for 

different values of ,ε λ  and Pr  for velocity and temperature 

profiles computed up to [25 / 25]  iterations. The pattern 

followed by pade iterates guarantees the convergence of the 

HAM solution. It is also worthy to note that the convergence 

rate for velocity profile is much faster than that for 

temperature gradient. Table 2 provides behavior of boundary 

derivatives for velocity profile against different sets of ε  and 

.λ  The variation of heat flux at the surface of the sheet for a 

couple stress fluid is given in Table 3 for different pairs of ε  

and Pr .  From Table 3 it is noted that increase in both ε  and 

Pr  produces a corresponding increase in the heat flux at the 

surface. 

 

Figure 1. ℏ - Curves for f ′  for different values of ε  plotted at 15
th

 

order of approximation. 

 

Figure 2. ℏ - Curves for temperature profile θ  for different values of ε  

and Pr,  plotted at 20
th

- Order of approximation. 

 

Figure 3. ℏ - Curves for temperature profile θ  for different values of λ  

and Pr,  plotted at 20
th

- Order of approximation. 

 

Figure 4. Influence of λ  over f ′  for 0.5,1.5ε = . 

 

Figure 5. Influence of ε  over f ′′  for 0.5,1, 2λ = . 

 

Figure 6. Influence of ε  over '''f  for 0.5,1, 2λ = . 
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Figure 7. Influence of Pr  over θ  for Pr 150,70,10,7,0.7= . 

 

Figure 8. Influence of ε  over θ  for 3, 2,1.5,0.5ε = . 

 

Figure 9. Behavior of local Nusselt numbers for different involved 

parameters. 

Table 3. Behavior of heat flux at the surface of the sheet when 1λ = . 

Pr\ε 
-ϴ´(0) 

-0.25 0.00 0.50 1.50 2.00 

0.2 0.45222 0.51496 0.63405 0.84997 0.94845 

0.72 0.47004 0.66715 1.03252 1.64298 1.85047 

1 0.49145 0.73116 1.20251 1.91382 2.19624 

2 0.51054 0.89407 1.66341 2.71309 3.11933 

5 0.52976 1.14246 2.55754 4.30189 4.95027 

7 0.57571 1.24986 3.00875 4.93391 5.66433 

10 0.60164 1.37531 3.56052 5.83020 6.50605 

15 0.67469 1.42095 5.98810 6.25155 7.19630 

5. Conclusion 

Main findings obtained from the analysis are 

1) By increasing the couple stress parameter λ  the 

velocity profile f ′  decreases when 0.5,1.5ε = . 

2) By increasing the couple stress parameter λ  the 

temperature profile θ  increases. 

3) By increasing both ε  and Pr  the corresponding heat 

flux at the surface increases. 
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