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Abstract: The primary goal is to characterize Locally H-closed spaces (LHC), by conditions on the remainders of their
extensions. These spaces are also characterized using subspaces and their extensions as well. Characterizing these classes of
spaces using the remainders of the subspaces in their extensions provide characterizations of them in terms of their boundaries.
Recently, the authors have proved that these results give necessary and sufficient conditions for the space to be compact A number
of equivalences are proved for Hausdorff (Urysohn) [regular] spaces. These results lead to similar characterizations of Locally
Urysohn-closed (LUC) as well as Locally regular-closed (LRC) spaces. Some of these equivalent properties generalize a number
of existing results on these topics. In the present article it is shown that if X is a Hausdorff LHC space then each closed set is an
intersection of regularly open sets as well as each closed set is an intersection of semi-closed neighborhoods. In 1969 Porter and
Thomas had shown that in a Hausdorff space a locally H-closed subspace is the intersection of an open set and a closed set. In
this article, it is shown that a space X is LHC if and only if every nonempty proper regularly closed subset of X is LHC.
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1. Introduction
A Hausdorff topological space is defined to be H-closed

if it is a closed subset of any Hausdorff space in which it is
embedded, and is locally H-closed (LHC) if each of its points
has an H-closed neighborhood. In 1991, several properties of
LHC spaces are established [7]. It includes the following:

Theorem 1.1 A Hausdorff space X is LHC if and only if
the remainder κXrX is a θ-closed subset of every (some) H-
closed space in which it is embedded, where κX is the Katětov
extension of X .

In this section background and relevance of the study of
LHC spaces in relation to the previous results of such spaces
are given. It is not exhaustive, but those results relevant to the
study here are selected.

A subset B of a Hausdorff space is quasi Hausdorff closed
(QHC) (quasi Urysohn closed ((QUC))) [quasi regular closed
(QRC) if each filter base Ω on B satisfies B ∩ adhθΩ(B ∩
adhuΩ)[B ∩ adhsΩ] 6= ∅. (Definitions of the different
adherence of a filter base indicated here are given later in this
section.) It is shown that the following four statements are
aquivalent for a Hausdorff (Urysohn) [regular] space.

1. X is LHC (LUC)[LRC];
2. κX rX is QHC (QUC) [QRC] in κX;
3. clθ(κX rX)(clu(κX rX)cls(κX rX)) =⋃

κXrX clθ{x}(clu{x})[cls{x}];
4. κX rX is θ-closed (u-closed) [s-closed],

Where clθA(cluA)[clsA] is the θ-closure (u-closure) [s-
closure] of a subset A of a topological space. Some of the
results in this article generize some earlier results by Espelie,
Joseph and Kwack [3, 4, 11, 12]. In an H-closed space,
adhθΩ is shown to be QHC relative to X for any filterbase
Ω. In an Urysohn closed space, adhuΩ is shown to be QUC
(quasi Urysohn closed) relative to X for any filterbase Ω. This
last result is a solution to a generalization of a problem left
open in 1981 [4]. Other genralizations include the following:
If Ω,Γ are filterbases and adhθΩ ∩ adhθΓ = ∅, there are
V ∈

⋃
Ω

∑
F,W ∈

⋃
Γ

∑
F, such that V ∩ W = ∅. If

adhθΩ ∩ adhuΓ = ∅, there are V ∈
⋃

Ω

∑
F,W ∈

⋃
Γ ΛF,

with V ∩ W = ∅. If adhuΩ ∩ adhuΓ = ∅, there are
V ∈

⋃
Ω ΛF,W ∈

⋃
Γ ΛF, such that V ∩ W = ∅. If X

is H(i)(U(i)) then adhθΩ(adhuΩ) is QHC (QUC) relative
to X, (where

∑
F represents the open sets about F and
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ΛF represents the collection of open sets containing a closed
neighborhood of F ). The concepts of locally regularly-closed
(LRC) and locally H-set (LHS) are introduced and shown to be
equivalent to LHC, in a Hausdorff space.

Concepts mentined above, including the concepts of θ-
closure, u-closure, s-closure of a set and a θ-rigid subset etc.
all are defined later in this section.

The following result was established by Espelie and Joseph
[3].

Theorem 1.2 [3] If A ⊂ X is θ-rigid, then clθA =⋃
A clθ{x}.
The proof of the next theorem is easy and is omitted.
Theorem 1.3 For x, y in a space X,x ∈ clθ{y} if y ∈

clθ{x}(x ∈ clu{y} if y ∈ clu{x})[x ∈ cls{y} if y ∈ cls{x}].
An improvement of this result as well as additional results

for (QUC) [QRC] subsets is the following.
Theorem 1.4 If A ⊂ X is QHC (QUC) [QRC], then clθA =⋃
A clθ{x}(cluA =

⋃
A clu{x})[clsA =

⋃
A cls{x}].

Proof Let A be QHC (QUC) [QRC], x ∈ clθA(x ∈
cluA)[x ∈ clsA]. Suppose there is no y ∈ A such that
x ∈ clθ{y}(x ∈ clu{y})[x ∈ cls{y}]. Then A is not
QHC (QUC) [QRC]. Hence clθA =

⋃
A clθ{x}(cluA =⋃

A clu{x})[clsA =
⋃
A cls{x}].

The following Theorem was established in 1981 [12].
Theorem 1.5 The following statements are equivalent for a

Hausdorff space X .
1. The space X is LHC;
2. κX rX is a θ-closed subset of κX;
3. κX rX is a θ-rigid subset of κX .

In this paper, the above Theorem is extended to the
following. Note that ifX is Urysohn (regular), then (κXrX)
is Urysohn (regular), being a descrete set.

Theorem 1.6 The following statements are equivalent for a
Hausdorff (Urysohn) [regular]space X .

1. The space X is LHC;
2. (κX rX)(µX rX) is a θ-closed (u-closed) [s-closed]

subset of κX (µX), for every H-closed extension µX
of X;

3. κX r X(µX r X) is a QHC (QUC) [QRC] subset of
κX(µX), for every H-closed extension µX of X;

4. The equation clθ(κXrX) =
⋃
κXrX clθ{x}(clu(κXr

X) =
⋃
κXrX clu{x})[cls(κX r X) =⋃

κXrX cls{x})] holds.
Following are the definitions of some of the concepts which

are used in this article. Most of the definitions which are stated
here, involving extensions of spaces, can be found in [21]. A
space Y is called an extension of X if X is a dense subspace
of Y . A subset A of a space X is regularly closed if it is
the closure of an open set or equivalently, A = cl(intA),
where intA is the interior of A and clA is the closure of
A.The concept of θ-closure of a set was introduced by Velic̆ko
[22]. In the study of H-closed spaces, this concept helps
to replace open filter base with arbitrary filter base as can
be seen easily. If A ⊆ X , the θ-closure of A, denoted as
clθA = {x : A ∩ clV 6= ∅,∀ V ∈ Σ{x}}, where Σ{x}
represents the set of all open sets containing x. A set A is
θ-closed if A = clθA. It should be noted that θ-closure of

a set need not be θ-closed. If Ω is a filter base, θ- adherence
of Ω, adhθΩ =

⋂
F∈Ω clθF . A set A ⊆ X is said to be θ-

rigid, if each filter base Ω on X satisfying the property that
F ∩ clV 6= ∅, for all F ∈ Ω and V ∈ Σ(A) also satisfies that
adhθΩ ∩ A 6= ∅ [2]. It is shown that clθ(A) =

⋃
A clθ{x} for

any θ-rigid A ⊂ X and thus a θ-rigid set A is θ-closed in any
Hausdoff space since such spaces satisfy clθ{x} = {x} [3]

The concept of u-closure of set was used by Joseph to
study, among others, compact spaces as well as Urysohn-
closed spaces [10]. Let A ⊆ X . The u-closure of A,
denoted as clu(A), = {x : clV ∩ A 6= ∅, V ∈ Λ(x)}, where
Λ(x) represents the collection of open sets containing a closed
neighborhood of x. A space is Urysohn if clu(x) = {x}. Also
it is shown that x ∈ clu(A) if and only if clu(V ) ∩ A 6= ∅ for
every V ∈

∑
(x) [4]. The concepts of u-adherence of a filter

base Ω and a u-rigid subset are defined similar to the concepts
of θ- adherence of a filter base and of a θ-rigid subset. The
u-adherence of a filter base Ω, adhuΩ =

⋂
F∈Ω clu(F ). A

set A ⊆ X is said to be u-rigid if each filter base Ω on X
satisfying the property that F ∩ clV 6= ∅ for all F ∈ Ω and
V ∈ Λ(A), satisfies that A ∩ adhuΩ 6= ∅ [4].

Herrington called a family of open sets, G, a shrinkable
family of open sets about a point x ∈ X if for each U ∈ G,
there is a V ∈ G such that x ∈ U ⊆ clU ⊆ V [8]. A point x is
in the s-closure of A ⊂ X , denoted as x ∈ cls(A), if and only
if V ∩ A(cls(V ) ∩ A) 6= ∅ for every V ∈ G(x)(V ∈

∑
(x)),

where G(x) is a shrinkable family of open sets around x.
Herrington defined a point x ∈ X to be in the s-adherence of
a filterbase F , denoted as x ∈ adhsF , if for each shrinkable
family G of open sets about x and F ∈ F , there is a V ∈ G
such that F ∩ V 6= ∅ [8]. That is, adhsΩ =

⋂
Ω cls(F )[8].

It was then proved that a regular space is regular-closed if and
only if each filterbase on the space has non-empty s-adherence.

Dickman and Porter showed that a θ-rigid subset of any
space is Quasi-H-closed relative to the space and that a θ-rigid
subset of a Hausdorff space is θ-closed, where a set A ⊆ X
is Quasi H-closed (QHC) relative to X if each filter base Ω
on X satisfies A ∩ adhθΩ 6= ∅ [1]. If X , not necessarily
Hausdorff, is QHC relative to X,X is an H(i) space [19]. A
HausdorffH(i) space is an H-closed space and a QHC relative
to X subset is called an H-set, if X is Hausdorff [23]. Joseph
showed that if X is an H(i) space and A ⊆ X , clθA is QHC
relative to X [11]. Note that a QHC relative to X set need
not be H-closed as a subspace. Porter and Tikoo pointed out
that θ-closed subset of an H-closed space need not be H-closed
[20]. However, Joseph proved that θ-closed subset of an H(i)-
space is θ-rigid [12]. Consequently, the following Theorem
was immediate.

Theorem 1.7 In an H-closed space, a subset is θ-closed if
and only if it is θ-rigid.

Espelie et al established several comparative properties of
clθA and cluA, for a subset A of a QHC space X [4]. It was
shown that (1) if Xis QHC and if A ⊂ X(Ω a filter base on
X), then clu(A)(aduΩ) is QHC relative to X; (2) If A is QHC
relative to a space X , then clθA ⊂ ∪Aclu(x); (3) Every θ-
rigid subset of a space is u-rigid, but a u-rigid subset need
not be θ-rigid; (4) If A is a u-rigid subset of a space, then
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clu(A) = ∪Aclu(x) and hence (5) if A is a θ-rigid subset of a
space, then clu(A) = ∪Aclu(x).

As is clear from the discussion above, θ -closure of a set and
θ-closed subsets of a space play significant roles in the study of
H-closed spaces as well as in the study of LHC spaces. In view
of the above stated Theorems, it is also clear that u-closure of
a set and u-rigid subsets of a space could be effectively used to
obtain new properties of LHC spaces.

As is stated in Theorem 1.7, in an H-closed space, a set is
θ-closed if and only if it is θ-rigid. This observation paved the
way for several new characterizations of H-closed spaces and
LHC-spaces in terms of H-closed extensions. Theorem 1.5
is a consequence of the above Theorem and appeared in the
same paper [12]. The main tools used in this study of LHC-
spaces are H-closed extensions and the remainders of a space
in H-closed extensions. We also use H-closed extensions of a
subspace and the remainders to provide new characterizations
of LHC spaces. Throughout this article, a space is considered
to be Hausdorff. Also, in the sequel, µX represents any H-
closed extension of X . Proofs of all results stated in sections 1
and 2 are given in subsequent sections as sections 1 and 2 are
introductory sections.

2. H-closed Extensions

Let X be a Hausdorff space and let X∗= X ∪ {U : U is a
free open ultrafilter on X}, where an open ultrafilter is called
free if it does not converge. For each open set V ⊆ X , let
O(V ) = V ∪ {U ∈ X∗ rX : V ∈ U}. Then,

(i) {O(V ) : V open in X} is an open base for a topology
on X∗. X∗ with this topology is an H-closed extension of X .
This extension is called the Fomin extension σX [5].

(ii)X∗ with the topology generated by the open base {V : V
is open in X} ∪{V ∪ {U} : V ∈ U ,U ∈ X∗ r X} is an
H-closed extension of X , called the Katĕtov extension and is
denoted by κX [14].

(iii) Let θX = {U : U is an open ultrafilter on X }. For each
open V ⊆ X , let o(V ) = {U ∈ θX : V ∈ U}. The family
{o(V ) : V open in X } is a base for a topology on θX , which
is extremally disconnected, compact and Hausdorff [9].

It is to be noted that while the topologies in (i) and (ii) give
extensions of a space, the topology generated by the base in
(iii) provides an extremally disconnected and compact space
associated with a given space X .

Obreanu introduced the concept of Locally H-closed spaces
[16]. He studied one point H-closed extensions of such
spaces. He proved that LHC spaces have one point H-closed
extensions and that the set of one point H-closed extensions
admits projective maximum and projective minimum. Also,
he proved that the product of a non-void family of Hausdorff
spaces is LHC if and only if all but finitely many members of
the factor spaces are H-closed and each factor space is LHC.
In 1991, Mike Girou studied LHC spaces, by investigating
the remainders of H-closed extensions [7]. This was in line
with the investigation done by Tikoo [22]. Tikoo studied
remainders of H-closed extensions. He, noting that locally

compact spaces always have compactifications with compact
remainders, asked if LHC spaces were characterized by having
H-closed extensions with H-closed remainders. Girou stated
that the answer to this question was negative and proved that
a space X is LHC if and only if any H-closed extension of
X has a θ-closed remainder. However, note that this Theorem
was an immediate consequence of Theorem 1.7 above as is
stated in Theorems 1.5 and 1.6. Girou, also while investigating
those H-closed spaces in which every H-closed sets are θ-
closed, showed that such spaces are H-closed spaces which
are Urysohn [7].

It is to be noted that many of the Theorems of Girou come
as consequences of the observation by Joseph [12]. This fact is
evident from Theorem 1.7. Also many new Theorems follow
from the observation that the family of θ-closed subsets of an
H-closed space coincides with the family of θ-rigid subsets.

In this article, several properties of H-closed spaces are
extended to LHC-spaces. Also among other Theorems the
following characterization of a LHC-space is established in
terms of its subspaces:

Theorem 2.1 A space X is LHC if and only if every non-
empty proper regularly closed subset of X is LHC.

Utilizing the function π : θX → σX such that π(U) = U
for each free open ultrafilter U on X and π(U) = x, where
x is the unique convergent point of the fixed ultrafilter U , the
following characterization for a non-dense open subset of a
LHC space to be LHC is given:

Theorem 2.2 Let X be LHC and B ⊂ X be open and not
dense in X . Then B is LHC if and only if π−1(X r B) is
compact.

We also characterize LHC space X in terms of H-closed
extensions of a subset B of X in the following Theorem.

Theorem 2.3 Let B ⊆ X . Then the following statements are
equivalent for a Hausdorff space X .

1. The space X is LHC;
2. µB r B is a θ-closed subset of µB for every H-closed

extension µB of B;
3. µB r B is a θ-rigid subset of µB for every H-closed

extension µB of B;
4. κB rB is a θ-rigid subset of κB;
5. κB rB is a θ-closed subset of κB.
Characterizing LHC spaces in terms of u − closre and θ-

closure operators on the remainders of a Hausdorff space in an
H-closed extension, we give the following Theorems:

Theorem 2.4 The following are equivalent for a Hausdorff
space X:

1. X is LHC;
2. clθ(κX r X)(respectively, clθ(µX r X) =⋃

κXrX clθ(x)( respsectively,
⋃
µXrX clθ(x));

3. κX rX(respectively, µX rX) is u-rigid;
4. κX r X)(respectively, µX r X) is an H-set in
κX(respectively, µX).

Theorem 2.5 . The following are equivalent for a Urysohn
space X:

1. X is is LHC;
2. clu(κX r X)(respectively, clu(µX r X)) =⋃

κXrX clu(x)(respectively,
⋃
µXrX clu(x)),.
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3. LHC-Spaces Through Subspaces and
H-Closed Extensions

As stated in the Introduction, Theorem 1.5 can be extended
to any H-closed extension µX of X as stated in Theorem 1.6.
For the sake of completeness a direct proof of Theorem 1.6 is
given in this section and is stated here as Theorem 3.1.

Theorem 3.1 . The following statements are equivalent for a
Hausdorff space X .

1. The space X is LHC;
2. µX r X is a QHC subset of µX for every H-closed

extension µX of X;
3. µX rX is a θ-closed subset of µX for every H-closed

extension µX of X;
4. µX r X is a θ-rigid subset of µX for every H-closed

extension µX of X;
5. κX rX is a θ-rigid subset of κX;
6. κX rX is a θ-closed subset of κX .

Proof (1)⇒ (3). Choose x ∈ X and V ∈ ΣX(x) such that
clX(V ) is anH-closed subset ofX . However, clµX(V )∩X =
clX(V ) and hence it follows that clµX(V )∩X is an H-closed
subset of X and hence is closed in µX , clµX(V )∩X is a µX-
closed neighborhood of x, and (µX rX)∩clµX(V )∩X = ∅.
Hence (µX rX) is θ-closed in µX .

(3)⇒ (2). Any filterbase Ω in (µX rX) gives a filterbase
in µX and hance has non-empty adherence. Since (µX rX)
is θ-closed in µX , Ω has non-empty adherence in (µX rX).

(2)⇒ (3). Follows from [11].
(3)⇒ (4). Obvious.
(4)⇒ (5); (5)⇒ (6). These follow from [12].
(6) ⇒ (1). Suppose κX r X is a θ-closed subset of

κX and let x ∈ X . Choose an open subset V ∈ Σ(x) of
x ∈ X such that clκX(V ) ∩ (κX r X) = ∅. It follows that
clκX(V ) ⊆ X and hence clκX(V ) is H - closed in X since
clκX(V ) = clX(V ).

It is not difficult to see that ”every” can be replaced with
”some” in statements (2) and (3) since in that case, the proof
of (3) ⇒ (1) will follow in the same line as in the proof of
(6) ⇒ (1) with κX replaced with some H-closed extension
ηX .

The following theorem can be proved using similar line of
argument, using the facts that X is Urysohn (regular) if and
only if κX is Urysohn (regular); x ∈ clu(A) if and only if
clu(V ) ∩A 6= ∅ for every V ∈

∑
(x), x ∈ cls(A), if and only

if cls(V ) ∩ A 6= ∅ for every V ∈
∑

(x) and u-closure as well
as s-closure of a set is closed. A spaceX is LUC (LRC) if each
point has a Urysohn-closed (regular-closed) neighborhood.

Theorem 3.2 . The following statements are equivalent for a
Hausdorff (Urysohn) [regular]space X .

1. The space X is LHC (LUC) [LRC];
2. κX rX is a QHC (QUC) [QRC] subset of κX;
3. κX r X is a θ-closed (u-closed) [s-closed] subset of
κX .

Proof Clear from the above stated facts and with similar
arguments as in the proof of Theorem 3.1.

Theorem 3.3 . A Hausdorff space X is LHC if and only if

clθ(µX rX) =
⋃
µXrX clθ(x).

Proof Since the spaces are Hausdorff clθ(µX r X) =⋃
µXrX clθ(x) = µX rX because clθ{x} = {x}. Thus the

space is LHC because µX rX is θ closed. On the other hand,
if X is LHC, then µX rX is θ-rigid so

clθ(µX rX) ⊂ clu(µX rX) =
⋃

µXrX
clθ{x} = µX rX,

since the spaces are Hausdorff, for each H-closed extension
µX .

Theorem 3.4 . If µX is a Urysohn [regular] space,
X is LHC if and if and only if clu(µX r X) =⋃
µXrX clu(x)[cls(µX rX) =

⋃
µXrX cls(x)].

Proof The proof is similar to the proof of Theorem 3.3, since
in a Urysohn (regular) space, {x} = clu{x}({x} = cls{x}).

Theorem 3.5 . A space is LHC if and only if κX r
X(respectively, µX rX) is an H-set.
Proof. If X is LHC, κX r X (respectively, µX r X) is θ
closed in κX (respectively, µX) and thus is an H-set in κX
(respectively, µX).

Conversely, suppose that κX rX (respectively, µX rX)
is an H-set in κX (respectively, µX). Let Ω be a filter base
in κX(respectively, µX). Then adhθΩ ∩ (κX r X) 6= ∅
(respectively, adhθΩ ∩ (µX rX) 6= ∅). Therefore each filter
base Ω which satisfies the property that F ∩ cl(W ) 6= ∅ for all
F ∈ Ω andW ∈ Σ(κXrX) (respectively,W ∈ Σ(µXrX))
also implies that (κX r X) ∩ adhθΩ 6= ∅ (respectively,
µXrX)∩adhθΩ 6= ∅.Hence κXrX (respectively, µXrX)
is θ-rigid and hence is θ- closed in κX r X (respectively,
µX rX). Therefore, X is LHC.

The proof of the above theorem shows that if A ⊆ X is an
H-set, then A is θ -rigid and hence the following theorem is
immediate.

Theorem 3.6. A Hausdorff space is LHC if and only if
κX(respectively, µX)has an H-set in κX (respectively, µX).
Proof. Clearly κX r X (respectively, µX r X) is a θ
closed subset of κX(respectively, µX) and is an H set of
κX(respectively, µX). Moreover, κX r X (respectively,
µX rX) is an H-set and hence is θ- rigid in κX(respectively,
µX). THus X is LHC.

Our next proposition uses Theorem 3.1 to give another proof
for Proposition 3.2 of [7].

Corollary 3.1 ([7], Proposition 3.2). Let X be an H-
closed space and B an open subset. Then the following are
equivalent:

1. B is LHC.
2. X rB is a θ-closed subset of X;
3. BdB is a θ-closed subset of clXB, where bdB is the

boundary of the set B.
Proof These conclusions are consequences of the facts that

an H-closed subset of B is closed in X and clXB is an H-
closed extension of B.

The next corollary is a new Theorem which is another
consequence of the Theorem 3.1.

Corollary 3.2. Let X be an H-closed space and B an open
subset. Then the following are equivalent:
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1. B is LHC.
2. X rB is a θ-rigid subset of X .
3. BdB is a θ-rigid subset of clXB.

The corollaries 3.1 and 3.2 above can be stated in terms
extensions of subspaces, as is shown in the following Theorem.

Theorem 3.7. Let X be H-closed. The following are
equivalent for each open A ⊂ X:

1. The subset A is LHC.
2. The subset clX(A) r A = bdX(A) is a θ-closed subset

of clX(A).
3. The subset clX(A)rA = bdX(A) is a θ-rigid subset of
clX(A).

Proof (1) ⇒ (2). Since A is an open subset of X clX(A)
is a regular closed subset of X and hence is an H − closed
extension of A. Therefore, in view of Theorem 3.1 (3),
clX(A) rA is a θ-closed subset of clX(A).

(2)⇒ (3). Follows from Theorem 3.1 (4)
(3) ⇒ (1) This follows from the equivalence of (3) and (1)

in Theorem 3.1.
Theorem 3.8 below improves on Proposition 3.9 of [7]. It is

stated here as Corollary 3.3.
Theorem 3.8. If X is LHC and V is open and not dense in

X , then clX(V ) is H-closed.
Proof Clearly clκX(V ) ∩ X = clX(V ). It follows that

clX(V ) is H-closed in X , since clXV is closed in H-closed
extension κX of X .

Corollary 3.3 comes immediately from the above.
Corollary 3.3 [7]. A regularly-closed subset of a LHC space

is LHC.
The Theorem 3.9 below improves on Theorem 4.15 in [11].

That result is stated here as Corollary 3.4.
Theorem 3.9 . If X is LHC and A ⊂ X satisfies clκXθ (A) ⊂

X , then clXθ (A)is an H-set.
Proof It is straightforward to show that clκXθ (A) =clXθ (A),

as in the proof of Theorem 3.1. Then clκXθ (A) is an H-set,
Theorem 4.15 of [11].

It should be noted that in the Theorem 3.8 and in Theorem
3.9, κX can be replaced by any H-closed extension µX of
X , since for any H-closed extension µX of X , and an open
V ⊂ X , clµX(V ) ∩ X = clX(V ). Sine X is LHC, it
follows that clµX(V ) ∩ (µX − X) = ∅ and consequently,
clµX(V ) = clX(V ). Hence clX(V ) is H-closed in X .

Corollary 3.4 [11]. If X is a QHC space and K ⊂ X , then
clθ(K) is QHC relative to X .

Corollary 3.5 The θ−closure of any subset of an H-closed
space is an H-set.

Theorem 3.9 is extended to the following characterization
of LHC spaces.

Theorem 3.10 A space X is LHC if and only if for every
A ⊆ X, clκXθ (A) (respectively, clκXu (A)) is an H-set in κX(in
µX , when the closures are taken in µX).

Proof Clearly, since κX , as well as (µX), is H-closed,
clθ(A) (respectively, clu(A)) is an H-set for any A ⊂ X
([4],[11]). On the other hand, for the converse, since the
assumption is true for for any A ⊆ X , let A = X . If clκXθ (X)
(as well as clκXu (X)) is an H-set in κX , then for any x ∈ X
there exists V ∈

∑
(x) such that clX(V )∩ (κXrX) = ∅. So

κX r X is θ-closed in κX and hence X is LHC. Replacing
κX with µX , we can prove the result in the case of extension
µX .

The Corollary 3.3 can be extended to the following to give
a characterization of LHC-spaces.

Theorem 3.11 . A space X is LHC if and only if every non-
empty proper regularly closed subset of X is LHC.

Proof If X is LHC, then every regularly closed subset is
LHC. In particular every proper regularly closed subset is
LHC.

Conversely, assume that every non-empty proper regularly
closed subset of X is LHC. Let B ⊂ X be a non-empty
regularly closed subset of X . Note that X = B ∪ (X rB) =
B ∪ clX(X r B). Since B is a non-empty regularly closed
subset and intXB ∩ (X rB) = ∅, X rB is not dense in X .

Therefore, both B and clX(X r B) are proper non-empty
regularly closed subsets of X and hence are LHC subsets.
Thus X is a union of two LHC sets and hence is LHC.

Theorem 3.12 improves on Theorem 1 in [3]. It is stated
here as Corollary 3.6.

Theorem 3.12 . If X is LHC and A, B ⊂ X satisfy the
conditions clXθ (A) ∩ clXθ (B) = ∅, clXθ (A) ∪ clXθ (B) 6= X ,
there are sets V ∈ ΣX(A), W ∈ ΣX(B) satisfying V ∩W =
∅.

Proof Neither clXθ (A) = X nor clXθ (A) = X holds, so a
combination of Theorem 3.10 and Theorem 1 in [3] leads to
the desired conclusion since clκXθ (A) =clXθ (A).

Corollary 3.6. [3] Subsets of an H-closed space with
disjoint θ−closures are separated by disjoint open sets.

Using Theorem 3.8, the proof of the following theorem
follows from Theorem 3.1 and is different from the proof of
Theorem 3.8 of [7]. Moreover, the following Theorem extends
Theorem 3.8 of [7].

Theorem 3.13. Let X be LHC and let B ⊆ X be open not
dense in X . Then the following are equivalent:

1. B is LHC.
2. X rB is θ -closed in X .
3. clXB rB is θ -closed in clXB.
4. clXB rB is θ-rigid in clXB.
5. X rB is θ-closed in any H-closed extension µX of X .
6. X rB is θ -rigid in any H-closed extension µX of X .

Proof (1) ⇒ (2). Let x ∈ B. There is an H-closed
neighborhood V of x in B and hence V is a closed, in X ,
neighborhood of x in X , in view of Theorem 3.8. Also
V ∩ (X rB) = ∅. Therefore X rB is θ -closed in X .

(2)⇒ (3). Follows from Lemma 3.1 of [7]
(3) ⇒ (1). In view of Corollary 3.3, the (1) follows from

the fact that clXB is an H-closed extension of B.
Equivalence of (3) and (4) follows from Theorem 3.1.
Equivalence of (2) and (5) follows from clµXθ (XrB)∩X =

clXθ (X rB) = (X rB).
Equivalence of (5) and (6) follows from Theorem 3.1.
It is pointed out that the line of proof of (1)⇒ (2) is similar

to that of the proof of the Proposition 3.2 of [7]. However, here
the space X is LHC, not necessarily H-closed.

The following is established: Let X be a Hausdorff space
and let A ⊂ X . Then A is θ-rigid in X if and only if A is
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θ-rigid in κX if and only if A is θ-rigid in σX if and only if A
is θ-rigid in some H-closed extension of X . [12].

Let θX be the compact and extremally disconnected space
associated with X and let π : θX → σX be defined by
π(U) = U for each free open ultrafilter U onX and π(U) = x,
where x is the unique convergent point of the fixed ultrafilter U .
Dickman and Porter proved that if X is a Hausdorff space and
A ⊂ X , then π−1(A) is compact if and only if A is θ-closed in
κX [1]. Thus, considering the fact that in an H-closed space,
a set is θ-closed, if and only if it is θ-rigid, if X is a Hausdorff
space and A ⊂ X , then π−1(A) is compact if and only if
A is θ-rigid in κX .(Theorem 8, [12]). In view of the above
Theorems, the following is a Corollary to Theorem 3.13:

Corollary 3.7. Let X be LHC and B ⊂ X be open and not
dense in X . Then B is LHC if and only if π−1(X r B) is
compact.

Proof Proof is immediate in view of the above discussion
and the fact that clκXθ (X rB) = clXθ (X rB) = X rB.

Girou gave a characterization for an H-closed space to be
compact using the concept of a rim θ-closed space [7]. A
space X is rim θ-closed if it has a basis of open sets whose
boundaries are θ-closed subsets of their closures [7]. We define
a rim θ-rigid space and a rim u-rigid space as follows:

A space X is rim θ-rigid if it has a basis of open sets whose
boundaries are θ-rigid subsets of its closures. A rim u-rigid
space is defined similarly. A space X is rim u-rigid if it has a
basis of open sets whose boundaries are u-rigid subsets of their
closures. A θ-rigid subset of a space is u-rigid (Theorem 4 [4]).
Hence a rim θ-rigid space is rim u-rigid and the converse is not
necessarily true since there exist u-rigid subsets which are not
θ-rigid [4]. Girou proved the following:

An H-closed space X is compact if and only if it is rim θ-
closed if and only if every open subset is LHC if and only if it
has an open base of LHC sets. ([7] Theorem 3.3)

In view of the above facts, the following Results follow from
Theorem 3.13.

Corollary 3.8. Let X be LHC and B ⊆ X be open and not
dense in X . If B is LHC, then the following are true:

1. X rB is u-rigid in any H-closed extension µX of X .
2. clXB rB is u-rigid in clXB.
Proof Follows from the fact that a θ-rigid subset is u-rigid

and Theorem 3.13 (4) and (6).
Following is an extension of Theorem 3.3 [7]:
Theorem 3.14. Let X be an LHC space. The following are

equivalent for X:
1. The space X is compact.
2. The space X is rim θ−closed.
3. The space X is rim θ-rigid.
Proof Follows from the fact that in an H-closed space family

of θ-closed sets coincides with the family of θ-rigid sets.
Now the following Theorem is immediate.
Theorem 3.15. A compact Hausdorff space is rim u-rigid.
The next two Theorems show that the remainder of an LHC

space in an H-closed extension as well as the boundary of a
non-dense open subset of an LHC space can be written as the
union of the u-closures of its singletons.

Theorem 3.16 If X is LHC, then

clu(µX rX) =
⋃

µXrX
clu(x)

for each H-closed extension µX of X .
Proof Since µX r X is θ-closed, µX r X is θ-rigid and

hence it is u-rigid. Therefore

clu(µX rX) =
⋃

µXrX
clu(x)

follows from Theorem 5 of [4].
Theorem 3.17. Let X be an LHC space and let A be open,

not dense in X and LHC. Then

clu(clX(A) rA) =
⋃

clX(A)rA

clu(x), and

clu(X rA) =
⋃
XrA

clu(x).

Proof Follows from Theorem 3.16 and Theorem 5 of [4].
Theorem 3.18. If X is Urysohn, the following statements

are equivalent:
1. The space X is LHC;
2. κX rX is u-rigid;
3. κX rX is u-closed.
Proof (1)⇒(2) If X is LHC, κX r X is θ-rigid and thus

u-rigid [4].
(2)⇒(3) If κX r X is u-rigid it is thus u-closed because

clu(κX rX) =
⋃
κXrX clu{x}.

(3)⇒(1)There exists V ∈ Λ(x), where Λ(x) represents the
collection of open sets containing a closed neighborhood of x.
Also, V ∩(κXrX) = ∅. There existsW ∈

∑
(x), clW ⊂ V.

Consequently, κX rX is θ-closed and hence, X is LHC.
Girou proved that if a space X is LHC and B ⊂ X , then

B is LHC, if and only if (1) clXB − B is a θ-closed subset of
clXB, and (2) the set of nowhere dense points ofB is LHC [7].
In the following theorem, it is shown that the two conditions
for B to be LHC can be replaced by the condition that clθB−B
is θ-closed in clθB.

Theorem 3.19. Let X be LHC and B ⊆ X . Then B is LHC
if and only if clθB −B is θ-closed in clθB.

Proof Suppose that X is LHC and B ⊆ X is LHC. Let
b ∈ B. SinceB is LHC, there exists an H-closed neighborhood
V of b in B. Consider a clθB-open set U containing b. Then
U ∩ V is an open subset of B containing b and clclθB(U ∩
V ) ∩B = clB(U ∩ V ). Also clB(U ∩ V ) ∩ (clθB −B) = ∅.
Therefore, clθB −B is θ-closed in clθB.

Suppose that clθB − B is θ-closed in clθB. Let b ∈ B.
Since X is LHC, b ∈ X , there is an open set G containing
b and clXG is H-closed. Also there exists a clθB -open set U
such that clclθBU∩(clθB−B) = ∅. Without loss of generality,
we assume that U = G∩ clθB. Now, clclθBU = clXG∩ clθB
and clclθBU ⊂ B, since clclθBU ∩ (clθB − B) = ∅. Since
clθB is closed and clXG is a regularly closed subset of X ,
clclθBU is an H-closed neighborhood of b. Hence B is LHC.
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We define a locally H-set as follows. A Hausdorff space
X is locally H-set (LHS) if each point in X has an H-set
neighborhood.

Theorem 3.20. A Hausdorff space X is LHC if and only if
it is LHS.

Proof It will be shown that X is LHS iff κX r X is θ-
closed in κX . For the proof of the necessity, Choose x ∈ X
and choose an H-set neighborhood C of x in X . Then C is
an H-set in κX , and is therefore closed in κX . Moreover,
C ∩ (κX r X) = ∅; so κX r X is θ-closed in κX . For the
proof of the sufficiency, choose an x ∈ X and a W ∈ ΣX(x)
such that clκX(W ) ⊂ X . It follows that clκX(W ) isH- closed
in X and clκX(W ) = clX(W ).

A Hausdorff space is called locally regularly-closed (LRC)
if each point and an open set containing the point contains a
regularly closed neighborhood of the point.

Theorem 3.21. A Hausdorff space X is LHC if and only if
it is LRC.

Proof If H is an H-closed neighborhood of x,
clX(int(H)) ⊆ H is a regularly closed neighborhood of x.
On the other hand, assume that X is LRC. Assume that every
point in X and an open set containing the point contains a
regularly closed set containing the point. Let x 6∈ κX r X ,
and let V ∈ ΣX(x).

Then there is a regularly closed set B such that x ∈ B =
clXU ⊆ clX(V ), where U is an open subset of X . Then
clκX(U) ∩ X = clX(U). So if Γ is an open filter base on
clκX(U) ∩X then Γ is an open filter base on clκX(U) and on
clX(U). Hence ∅ 6= adh(Γ) ⊂ X since clκX(U) is a regularly
closed neighborhood of x in κX .

This shows that Γ is not free on X . Thus clκX(U) ⊂ X and
κX rX is θ-closed in κX .

Ganster defined a space to be strongly s-regular if for any
open set F and a point x ∈ X − F , there is a regularly closed
set G such that x ∈ G and G ∩ F = ∅ [6].

It is known that every locally compact Hausdorff space is
regular. The following analogous Theorem follows from the
above Theorem:

Theorem 3.22. A Hausdorff LHC space is strongly s-regular.
Proof Immediate from Theorem 3.21 and Theorem 1 of [6].
Porter and Thomas showed that in a Hausdorff space a

locally H-closed subspace is the intersection of an open set
and a closed set ([19], Theorem 3.3). In the present article
characterizations for an LHC space in terms of subsets are
provided. Most of them are either in terms of regularly closed
subsets or open subsets.

Following Corollaries of Theorem 3.22 give properties of
closed subsets of a LHC space. The proofs of the following
corollaries follow from Theorem 3.21 above and Theorem
3.1.12 of [16].

Corollary 3.9. If X is a Hausdorff LHC space then each
closed set is an intersection of regularly open sets.

Corollary 3.10. If X is a Hausdorff LHC space, then each
closed set is an intersection of semi-closed neighborhoods.

We end this section with the following characterizations of
a LHC space X in terms of H-closed extensions of a subset B
of X . Some of these results are stated in Theorem 3.13.

Theorem 3.23. Let B ⊆ X . Then the following statements
are equivalent for a Hausdorff space X .

1. The space X is LHC;
2. µB r B is a θ-closed subset of µB for every H-closed

extension µB of B;
3. µB r B is a θ-rigid subset of µB for every H-closed

extension µB of B;
4. κB rB is a θ-rigid subset of κB;
5. κB rB is a θ-closed subset of κB.

Proof (1) ⇒ (2). Let X be LHC, B ⊆ X and x ∈ B.
Then x ∈ X and X is LHC. Therefore there is an open set
V ∈ ΣX(x) such that clX(V ) is and H-closed subset of X .
Now, V ∩B is an open subset ofB containing x and clB(V ) =
clXV ∩ B = clB(V ∩ B). Also, clµX(V ) ∩ X = clX(V ).
Similarly, clµB(V ∩ B) = clB(V ∩ B), since clB(V ∩ B) =
clµB(V ∩B)∩B. Therefore, clµB(V ∩B)∩ (µB rB) = ∅.
Hence µB rB is a θ-closed subset of µB.

(2)⇒ (3); (4)⇒ (5). These follow from [12].
(3)⇒ (4). Obvious.
(5) ⇒ (1). Suppose that κB r B is a θ -closed subset

of κB and let x ∈ X . If x ∈ B, choose an open subset of
V ∈ ΣX(x) such that clκB(V ∩ B) ∩ (κB r B) = ∅. If
x ∈ Xr (κBrB), there is an open subset V of X containing
x such that clκBV ∩ (κB r B) = ∅. However, for V ⊂ X ,
clX(V ) = clκX(V ) and hence is H-closed in X .

4. Examples

It is to be noted that any H-closed non-compact space will
be a LHC space which is not locally compact. This is so,
since every locally compact Hausdorff space is regular and a
regular H-closed space is compact. Therefore, an H-closed
space which is not compact is not locally compact. Hence,
Following are Examples of LHC spaces which are not locally
compact.

Example 4. 1 ([15] Example 3.6). Let X = {0}∪N ∪{j+
1
n : j, n ∈ N − {1}} and define V ⊂ X to be open if V
satisfies the following properties:

(i) If j ∈ (V ∩N)− {1}, then j + 1
n ∈ V ultimately;

(ii) If 0 ∈ V, then, ultimately, j + 1
2n ∈ V for all n;

(iii) If 1 ∈ V, then, ultimately, j + 1
2n+1 ∈ V for all n.

The above example is the classical example of a countable
minimal Hausdorff space which is not compact. So, this is
an example of a minimal Hausdorff space which is not locally
compact.

Example 4. 2 Example 3.7). Let Y = {0} ∪ (N − {1}) ∪
{j+ 1

2n : j, n ∈ N−{1}} with the subspace topology T from
X in Example 4.1.

For this space, 0 is the only θ−cluster point of {xn} defined
by xn = n + 1 but {xn} 6→ 0. So, this space is not minimal
Hausdorff and hence is not compact. The space is H-closed
and hence is LHC, but not locally compact.

Girou, while considering those H-closed spaces in which
every H-closed spaces are θ-closed, showed that such spaces
are Urysohn [7]. The space in Example 4.1 is an H-closed
space which is not Urysohn, since the points 0 and 1 do not
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have disjoint closed neighborhoods. Note that the space Y in
Example 4. 2 is H-closed, but not θ-closed since 1 ∈ clXθ (Y )
and 1 6∈ Y . It is also to be noted that the space in Example
4.1 is not rim θ-closed or rim u-closed, since the boundaries of
the basic neighborhoods of points 0 and 1 are not θ-closed or
u-closed. Since the space is H-closed, hence the space is not
rim θ-rigid or rim u-rigid.

5. Conclusion
In the present article, LHC spaces are characterized using

the remainders of the space in an H-closed extension. They
are alo characterized using the subspaces and their extensions.
Similar characterizations for LUC as well as LRC spaces
are provided. Characterizing these classes of spaces using
the remainders of the subspaces in their extensions provide
characterizations of them in terms of their boundaries. As
recent articles by the auhors, which are compiled in a
monograph, ’A study of topological properties via adherence
dominators’, demonstrate that these results give necessary
and sufficient conditions for the space to be compact [13].
Moreover, many results presented here provide generalizations
of a number of existing results, which are pointed out
throughout this article. In the present article it is shown that
if X is a Hausdorff LHC space then each closed set is an
intersection of regularly open sets as well as each closed set
is an intersection of semi-closed neighborhoods. As stated
earlier, Porter and Thomas showed that in a Hausdorff space
a locally H-closed subspace is the intersection of an open set
and a closed set [19].

Any result or definition from existing literature is given
appropriate citation, as needed. However, those concepts
which have been part of the literature on General Topology are
not given reference citation, but we do not claim authorship of
such concepts.
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