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Abstract: The case-cohort design is widely used in large cohort studies when it is prohibitively costly to measure some
exposures for all subjects in the full cohort, especially in studies where the disease rate is low. To investigate the effect of a
risk factor on different diseases, multiple case-cohort studies using the same subcohort are usually conducted. To compare the
effect of a risk factor on different types of diseases, times to different disease events need to be modeled simultaneously. Existing
case-cohort estimators for multiple disease outcomes utilize only the relevant covariate information in cases and subcohort
controls, though many covariates are measured for everyone in the full cohort. Intuitively, making full use of the relevant
covariate information can improve efficiency. To this end, we consider a class of doubly-weighted estimators for both regular
and generalized case-cohort studies with multiple disease outcomes. The asymptotic properties of the proposed estimators are
derived and our simulation studies show that a gain in efficiency can be achieved with a properly chosen weight function. We
apply the proposed method to re-analyze a data set from Atherosclerosis Risk in Communities (ARIC) study to showcase the
gain in efficiency. Concluding remarks and future researches are also discussed.
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1. Introduction
The case-cohort design is widely used in large cohort

studies when it is prohibitively costly to assemble exposure
history for all subjects in the full cohort. First introduced by
Prentice [1], the case-cohort design requires a random sample
in the full cohort, named ‘subcohort’. All subjects in the
full cohort are followed until failure or censoring occurs, but
complete exposure information is collected only for subjects
who experienced failure and for those subjects selected into
the subcohort. The case-cohort design is a special form of two-
phase sampling design [2].

For data from case-cohort studies for a single disease
outcome, many methods have been proposed under the Cox
proportional hazard model framework. A pseudo-likelihood
approach, which modified the partial likelihood by weighting

the contributions of cases and subcohort controls differently,
has been studied [1, 3]. Barlow [4] provided an easier
alternative approach to computing the asymptotic variance.
Chen and Lo [5] used a refined procedure to estimate the
at-risk average to achieve efficiency gain. Reference [6]
considered a stratified case-cohort design and used time-
varying weights based on the at-risk process to improve the
efficiency of the parameter estimates. Despite the advances in
methods for univariate case-cohort designs, literature on the
marginal models for case-cohort data with multiple disease
outcomes is scarce. Kang and Cai [7] proposed a weighted
estimating equation approach to fit a marginal proportional
hazard model with multiple diseases. Kim and Cai [8]
proposed a modified weight function in order to use the
covariate information from subjects who have other disease(s).
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Both of these methods use only the exposure information
collected on cases and subjects in the subcohort. See also [9]
for a comprehensive review.

In many studies, information about some exposures is
available on all subjects in the full cohort, while information
on other exposures that is costly to collect is available
only for the cases and subjects in the subcohort. The
former is referred to as the first-phase covariate data, and
the latter as second-phase covariate data. For example, the
Atherosclerosis Risk in Communities (ARIC) study is a large
cohort study that involved 15,792 participants. An aim in one
ancillary study to the ARIC study was to assess lipoprotein-
associated phospholipase A2 (Lp-PLA2) as potential risk
factor for atherosclerosis and its sequelae, so that physicians
may consider using Lp-PLA2 as a complementary risk factor
beyond the traditional ones. Given the large cohort size and
funding limitations, assaying Lp-PLA2 for all the participants
was cost-prohibitive. As an alternative, case-cohort studies
were carried out: Lp-PLA2 was obtained only for participants
with an incident coronary heart disease (CHD) or stroke
event, or in a selected subcohort of all participants [10, 11].
Lp-PLA2 is thus the second-phase covariate (the exposure
of primary interest) and the first-phase covariates are those
collected on the full cohort, such as race, gender, lipid
measurements, etc. To compare the effect of Lp-PLA2 on
incident stroke and CHD, the two disease outcomes need
to be modeled simultaneously to properly account for their
correlation. The methods proposed by [7] and [8] can be
applied in this situation. However, only covariate information
collected on the cases and subjects in the subcohort are
used. It is desirable to use relevant covariate information
collected on the full cohort to improve efficiency. For a
single survival outcome, Kulich and Lin [12] proposed a
doubly-weighted estimator that uses all available first-phase
covariate data and postulated a regression model for second-
phase covariate(s) on first-phase covariate(s), followed up by
references [13, 14] in which calibration methods were used for
weight estimation. However, such type of approach has not
been explored for multiple diseases. In this paper, we aim to
investigate a doubly-weighted approach to improve efficiency
with multiple diseases with data from multiple traditional case-
cohort studies. Furthermore, we also consider generalized
case-cohort designs. Generalized case-cohort designs are
usually conducted when the disease is not rare, but there are
limited resources. Under such situation, instead of taking all
the cases, a random sample of cases outside the subcohort is
drawn [7, 15]. It will be of interest to examine the doubly-
weighted approach for the generalized case-cohort studies.

2. Model and Estimation

2.1. Notations and Model Definition

Suppose that there are n independent subjects in the
full cohort and K disease outcomes of interest. Consider
independent vectors of potential failure times Ti =

(Ti1, . . . , TiK)T , i = 1, . . . , n, k = 1, . . . ,K. Similarly,
we use Ci = (Ci1, . . . , CiK)T to denote the potential right
censoring time vectors. In practice, it is common to have
Ci1 = . . . CiK = Ci. The observed time is Xik = Tik ∧
Cik. Let ∆ik = I(Tik ≤ Cik) denote the event indicator,
Nik(t) = I(Xik ≤ t,∆ik = 1) the counting process, and
Yik(t) = I(Xik ≥ t) the at-risk process for disease k of
subject i, respectively. Let Zik(t) be a p × 1 potentially
time-dependent covariate vector that can be decomposed into
two components: a p1 × 1 vector of first-phase covariates
Vik(t), and a p2 × 1 vector of second-phase time-independent
covariates Wik. The second-phase covariates are typically
time-independent in practice, and they are usually measured
at the baseline. The proposed method and the asymptotic
results can easily be extended to time-dependent second-phase
covariates setup. The potentially time-dependent first-phase
covariates are assumed to be ‘external’ in the sense that they
are not affected by the outcome processes [16]. We assemble
all the covariates into a vector Zi = (Zi1, . . . , ZiK)T and
denote τ the study end time. Define the marginal hazard for
disease outcome k

λik(t|Zik(t)) = lim
δ→0

1

δ
P{t ≤ Tik < t+ δ|Tik ≥ t, Zik(t)}.

Suppose that potential failure time Tik arises from a Cox-
type proportional marginal hazards model [17]

λik(t|Zik(t)) = Yik(t)λ0k(t)eβ
T
0 Zik(t), (1)

where λ0k(t) is an unspecified, baseline marginal hazard
function and β0 is a p× 1 vector of fixed unknown regression
parameters of interest. We note that disease-specific covariate
effects can be accommodated by model (1) by redefining the
regression coefficient vector and the covariate vector. For
example, if we are interested in the disease-specific effect
model:

λik(t|Zik(t)) = Yik(t)λ0k(t) exp(βTk Zik(t)), (2)

where Zik(t) can be the same or different for different k
and βk denotes the disease-k-specific effect for covariate
Zik(t), k = 1, ...,K. The above model can be rewritten
in the form of (1) by defining β∗ = (βT1 , . . . , β

T
K)T , a

collection of all disease-specific parameters, and Z∗ik(t) =
(0Ti1, . . . , Zik(t)T , . . . , 0TiK)T . Note that β∗TZ∗ik(t) =
βTk Zik(t), therefore, the following model is equivalent to (2):

λik(t|Z∗ik(t)) = Yik(t)λ0k(t) exp(β∗TZ∗ik(t)).

2.2. Estimation

If the data were complete, for d = 0, 1, 2, define
S

(d)
k,F (β, t) = n−1

∑n
i=1 Yik(t)Zik(t)⊗deβ

TZik(t), with
a⊗0 = 1, a⊗1 = a, a⊗2 = aaT . The relative risk parameter β0

can be estimated by solving the pseudo partial likelihood score
equation
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UF (β) =

n∑
i=1

K∑
k=1

∫ τ

0

{Zik(t)− Z̄k,F (β, t)}dNik(t) = 0, (3)

Where Z̄k,F (β, t) = S
(1)
k,F (β, t)/S

(0)
k,F (β, t). Under the

case-cohort design, (3) cannot be calculated because covariate
vector Zik(t) is not fully observed for subjects that are neither
in the subcohort nor among sampled cases. Instead, we
consider a weighted version of the pseudo likelihood score
function in which information from a completely observed
subject represents multi-fold information for subjects who
were not sampled to have their second-phase covariates
measured.

Assume that we sample without replacement to obtain a
subcohort of size ñ. Subcohort sampling is followed by the
sampling of non-subcohort cases, that is, for disease k, we
sample mk subjects without replacement from cases that are
outside the subcohort. Let ξi be an indicator of subcohort
membership which equals 1 if subject i is sampled into the
subcohort and 0 otherwise. Similarly, we define ηik as the
indicator for the ith subject outside the subcohort with the kth
disease being selected into the sample. For any i, the subcohort
sampling probability α̃ = Pr(ξi = 1) = ñ/n and disease-
specific case sampling probability q̃k = Pr(ηik = 1|∆ik =
1, ξi = 0) = mk/(nk − ñk), where nk and ñk denote the
number of cases for the kth disease in the cohort and in the

subcohort, respectively. With multiple disease outcomes of
interest, the case-cohort samples are usually drawn separately:
for each disease k, participants who have the event are sampled
with probability q̃k. This separate sampling may lead to
subjects with more than one diseases to be included in multiple
samples (overlapping subjects). Our estimation method can
accommodate such situation.

A marginal proportional hazards model for case-cohort
studies with multiple disease outcomes was first investigated
in [7], which embedded the at-risk processes in estimating
α̃ and q̃k. The motivation for using the doubly-weighted
estimator arises from the intuition that one could incorporate
additional information beyond the at-risk processes and hence
obtain a more efficient estimator. Further, it is desirable
to have the flexibility of weighting each covariate in (1)
differently, which could lead to improved precision. We use
the superscript/subscript ‘KC’ and ‘DW’ to indicate that the
quantity, function or estimate is obtained from implementing
the β̃II estimator in [7] and our doubly-weighted estimator,
respectively.

Let

w̃ik(t) = ∆ikξiIp + (1−∆ik)ξiα̂k(t)−1 + ∆ik(1− ξi)ηikq̂k(t)−1,

where

α̂k(t) = {
n∑
i=1

(1−∆ik)Aik(t)}−1{
n∑
i=1

(1−∆ik)ξiAik(t)}, (4)

and

q̂k(t) = {
n∑
i=1

∆ik(1− ξi)Bik(t)}−1 × {
n∑
i=1

∆ik(1− ξi)ηikBik(t)}, (5)

Where Aik(t) and Bik(t) denote diagonal matrices with
p potentially different random processes on their respective
diagonals. Each of the p covariates in model (1) can have
its dedicated process in order to estimate the sampling
probabilities more precisely. Define S

(d)
k,DW (β, t) =

n−1
∑n
i=1 w̃ik(t)Yik(t)Zik(t)⊗deβ

TZik(t), d = 0, 1, 2,

and the at-risk average process Z̄k,DW (β, t) =

{S(0)
k,DW (β, t)}−1{S(1)

k,DW (β, t)}. Following the idea
of generalized estimating equation (GEE) approach for
categorical and continuous outcome data, under independence
working assumption, we propose to consider a doubly-
weighted score equation:

UDW (β) =

n∑
i=1

K∑
k=1

∫ τ

0

w̃ik(t)× {Zik(t)− Z̄k,DW (β, t)}dNik(t) = 0. (6)

Note that UDW (β) reduces to the score function in [12]
when there is only one disease of interest. We will show
that β̂DW solving (6) is consistent and asymptotically follows
a normal distribution with a sandwich type of variance.
Because model (1) includes model (2) as a special case, these
asymptotic properties extend to the estimates of the parameters

in model (2).
Unlike other weighting schemes where weights and

S
(0)
k (β, t) are scalar functions, both S(0)

k,DW (β, t) and w̃ik(t)
in the doubly-weighted estimating equation in (6) are p × p
diagonal matrices. The second level weights, Aik(t) and
Bik(t) in (4) and (5), are diagonal matrices with p potentially
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different random processes on their respective diagonals. The
Kang and Cai estimator [7] is a special case of the doubly-
weighted estimator class by setting both Aik(t) and Bik(t) to
Yik(t) · Ip. The estimator in [8] also belongs to this class by

setting Aik(t) = {
∏K
j=1(1 − ∆ij)}Yik(t) and Bik(t) is not

applicable in a traditional case-cohort study. Another choice of
second level weight is similar to the ‘optimal’ weight proposed
in [12]. It is a p× p diagonal matrix in the form of

Aik(t) = diag[{Ẑik(t)− Z̄k,KC(β̂KC , t)}exp{β̂TKCẐik(t)}Yik(t)], (7)

Where β̂KC and Z̄k,KC(β̂KC , t) are parameter estimate and
estimated at-risk average process obtained from implementing
the Kang and Cai [7] method. Ẑik = (Ẑik,1, . . . , Ẑik,p)

T is a
p-vector of covariates, where Ẑik,p is the observed value if the
subject is in the case-cohort sample, otherwise it is estimated
using first-phase covariate information. Calculating weight
(7) requires another consistent and asymptotically normally
distributed estimator, and in our case we used β̂KC . The
calculation of Aik(t) in the form of (7) incorporates the first
phase covariates outside the case-cohort sample to improve
statistical efficiency. In this sense, specifying second-level
weights Aik(t) (and Bik(t)) in matrix form allows potential
fuller use of available covariate information.

The doubly-weighted estimator β̂DW can be obtained via a
Newton-Raphson algorithm by iteratively solving (6) until the
convergence criterion is met. Specifically, the estimator in the
step k + 1 is β(k+1)

DW = β
(k)
DW −DDW (β

(k)
DW )−1UDW (β

(k)
DW ),

where DDW (β) is the derivative of UDW (β) with respect to
β. Due to the matrix nature of S(0)

k,DW (β, t), special attention
is needed to computeDDW (β). The explicit form ofDDW (β)
is given in Appendix 1 in the supplementary material.

We propose to use a Breslow-Aalen type estimator for the
baseline cumulative hazard function Λ0k(t). The form of the
estimator is the same as the one proposed in [7] with the
estimator for β replaced by β̂DW . Specifically,

Λ̂0k(β̂DW , t) =

∫ t

0

∑n
j=1 ρjk(u)dNjk(u)

nS
(0)
k,KC(β̂DW , u)

,

where

ρjk(u) = ∆ikξi + (1−∆ik)ξiα̂
KC
k (u)−1 + ∆ik(1− ξi)ηikq̂KCk (u)−1,

αKCk (u) = {
n∑
i=1

(1−∆ik)Yik(u)}−1{
n∑
i=1

(1−∆ik)ξiYik(u)},

qKCk (u) = {
n∑
i=1

∆ik(1− ξi)Yik(u)}−1 × {
n∑
i=1

∆ik(1− ξi)ηikYik(u)},

And S(0)
k,KC(β, u) = n−1

∑n
i=1 ρik(u)Yik(u)eβ

TZik(u) are the scalar functions used in [7]. Based on the results in [7], this
estimator is consistent and converges weakly to a zero mean Gaussian process if β̂DW is a consistent estimator of β0. We will
establish the consistency of β̂DW in the next section.

3. Asymptotic Properties of General
Doubly Weighted Estimator

3.1. Asymptotic Results

We present the asymptotic properties of the doubly-weighted estimator. For k = 1, . . . ,K, define the following limiting
quantities:

s
(d)
k (β, t) = E{S(d)

k,F (β, t)}(d = 0, 1, 2),

z̄k(β, t) = s
(1)
k (β, t)/s

(0)
k (β, t),

vk(β, t) =
s

(2)
k (β, t)s

(0)
k (β, t)− s(1)

k (β, t)
⊗

2

s
(0)
k (β, t)2

,

Gk(β) =

∫ τ

0

vk(β, t)s
(0)
k (β, t)dΛ0k(t).
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We assume the usual regularity conditions, as required in
[18]:

Assumption 3.1. (Ti, Ci, Zi), i = 1, . . . , n are independent
and identically distributed.

Assumption 3.2. pr{Yik(t) = 1} > 0 for t ∈ [0, τ ], i =
1, . . . , n and k = 1, . . . ,K.

Assumption 3.3. |Zik(0)| +
∫ τ

0
|dZik(t)| < Dz < ∞ for

i = 1, . . . , n and k = 1, . . . ,K almost surely, where Dz is a
constant.

Assumption 3.4. Gk(β0) is positive definite for k =
1, . . . ,K.

Assumption 3.5. (Finite interval)
∫ τ

0
λ0k(t)dt < ∞ for k =

1, . . . ,K.
Assumption 3.6. (Asymptotic stability) There exists a

neighborhood B of β0 such that

sup
t∈[0,τ ],β∈B

‖S(d)
k,F (β, t)− s(d)

k (β, t)‖ →p 0

for d = 0, 1, 2 and k = 1, . . . ,K.
Assumption 3.7. (Asymptotic regularity) For all β ∈ B

and k = 1, . . . ,K: s(1)
k (β, t) = ∂

∂β s
(0)
k (β, t), s(2)

k (β, t) =
∂2

∂β∂βT s
(0)
k (β, t) where s

(0)
k (·, t), s(1)

k (·, t), s(2)
k (·, t) are

continuous functions of β ∈ B, uniformly in t ∈ [0, τ ] and
s

(0)
k (·, t) is bounded away from 0 on B × [0, τ ].

Assumption 3.8. (Lindeberg condition) There exists a δ > 0
such that as n→∞

n−1/2 sup
i,k,t
‖Zik(t)‖Yik(t)I{βT0 Zik(t) > −δ‖Zik(t)‖} →p 0.

We also need the following conditions concerning case-
cohort samples and second level weights:

Assumption 3.9. (Nontrivial subcohort and case sampling)

As n → ∞, α̃ converges to a constant on (0, 1]; similarly, for
k = 1, . . . ,K, q̃k converges to a constant on (0, 1].

Assumption 3.10. For each component Zik,l(t) of
Zik(t), var

∫ τ
0
|dVik,l(t)| < ∞, where Vik,l(t) =

Zik,l(t)exp{βT0 Zik(t)}. For each diagonal elementAik,l(t) of
Aik(t), var

∫ τ
0
|dAik,l(t)| <∞. Diagonal elements of Bik(t)

require a similar condition.
Assumption 3.11. Aik(t) is independent of ξi, and Bik(t) is

independent of ηik, for k = 1, . . . ,K.
Assumption 3.12. the absolute values of the diagonal

elements of µk(t) ≡ Ek[(1 − ∆1k)A1k(t)] and θk(t) ≡
Ek[∆1kB1k(t)] are bounded away from 0 for all t ∈ [0, τ ].

Assumption 3.12 is required in order to prove the asymptotic
properties of α̂k(t) and q̂k(t). As long as the elements on the
diagonal ofAik(t) orBik(t) are nonnegative (e.g., Yik(t)), this
condition is trivial. However, this assumption may not hold if
we use the weight function (7). We relax this condition in the
next section. This will enable us to use arbitrary second level
weights.

We present the asymptotic results here and provide the
outline of the proof in Appendix 2 in the supplementary
material. Define

Mik(t) = Nik(t)−
∫ t

0

Yik(u)eβ
T
0 Zik(u)dΛ0k(u),

Z̃ik(β, t) = Zik(t)− z̄k(β, t),

Mz̄,ik(β) =

∫ τ

0

Z̃ik(β, t)dMik(t),

Rik(β, t) = Yik(t)Z̃ik(β, t)eβ
TZik(u).

Asymptotic properties of β̂DW are summarized in the
following theorem:

Theorem 3.1. (Asymptotic properties of β̂DW )
Under conditions 3.1-3.12, β̂DW solving the estimating equation UDW (β̂DW ) = 0 is a consistent estimator of β0 and

√
n(β̂DW − β0)→d N(0, G(β0)−1Σ(β0)G(β0)−1),

where G(β) =
∑
kGk(β) and

Σ(β0) = Q(β0) +
1− α̃
α̃

V I(β0) + (1− α̃)
∑
k

pr(∆1k = 1)
1− q̃k
q̃k

V IIk (β0), (8)

where

Q(β0) = E

{∑
k

Mz̄,1k(β0)

}⊗
2

,

V I(β0) = var

{∑
k

(1−∆1k)

∫ τ

0

{R1k(β0, t)− µk(t)−1A1k(t)E[(1−∆1k)R1k(β0, t)]}dΛ0k(t)

}
,

V IIk (β0) = var

{
Mz̄,1k(β0)−

∫ τ

0

θk(t)−1B1k(t)× E[∆1kdMz̄,1k(β0, t)]

∣∣∣∣∆1k = 1, ξ1 = 0

}
.
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Throughout the manuscript, we assume that the subcohort
of size ñ is sampled without replacement. The key to prove
the asymptotic results in this setting is to apply Lemma 1 in the
supplementary material, which is specific for sampling without
replacement scheme. The asymptotic variance of β̂DW has
three components: the variance of the full data, the variation
due to subcohort sampling, and the variation due to further case
sampling if a generalized case-cohort design is used. Unknown
quantities can be estimated by substituting proper consistent
estimators for their theoretical counterparts. See Appendix 2
in the supplementary material for details.

3.2. Generalization to Arbitrary Second Level Weight

In this section, we relax assumption 3.12, which will enable
us to use arbitrary second level weights. For notational
simplicity, we drop the subscript l by assuming p = 1. For
p ≥ 2, the operation is on each diagonal element ofAik(t) and
Bik(t). We break down the second level weight by dynamic
grouping based on the sign of Aik(t) and Bik(t). Specifically,
denote γ+

ik(t) = I(Aik(t) ≥ 0), γ−ik(t) = I(Aik(t) < 0), and
let A+

ik(t) = γ+
ik(t)Aik(t), A−ik(t) = −γ−ik(t)Aik(t). We then

have an estimate of α using only the second level weights that
are non-negative:

α̂+
k (t) = {

∑
i

(1−∆ik)A+
ik(t)}−1{

∑
i

ξi(1−∆ik)A+
ik(t)}.

α̂−k (t) is defined similarly. For the second level weights Bik(t), we analogously define the quantities:

ζ+
ik(t) = I(Bik(t) ≥ 0), B+

ik(t) = ζ+
ik(t)Bik(t),

ζ−ik(t) = I(Bik(t) < 0), B−ik(t) = −ζ−ik(t)Bik(t),

q̂+
k (t) = {

n∑
i=1

∆ik(1− ξi)B+
ik(t)}−1 × {

n∑
i=1

∆ik(1− ξi)ηikB+
ik(t)},

q̂−k (t) = {
n∑
i=1

∆ik(1− ξi)B−ik(t)}−1 × {
n∑
i=1

∆ik(1− ξi)ηikB−ik(t)}.

Finally, the generalized weight function is

w̃ik(t) = ∆ikξiIp + (1−∆ik)ξi × [γ+
ik(t)α̂+

k (t)−1 + γ−ik(t)α̂−k (t)−1] + ∆ik(1− ξi)ηik × [ζ+
ik(t)q̂+

k (t)−1 + ζ−ik(t)q̂−k (t)−1].

The expressions of asymptotic variance also need to be modified to accommodate the grouping:

V I(β0) = var

{∑
k

(1−∆1k)

∫ τ

0

{
R1k(β0, t)− γ+

1k(t)µ+
k (t)−1A+

1k(t)E+[(1−∆1k)R1k(β0, t)]−

γ−1k(t)µ−k (t)−1A−1k(t)E−[(1−∆1k)R1k(β0, t)]

}
× dΛ0k(t)

}
,

where µ+
k (t) = E[(1−∆1k)A1k(t)|A1k(t) ≥ 0] and E+[(1−∆1k)R1k(β0, t)] = E[(1−∆1k)R1k(β0, t)|A1k ≥ 0]. µ−k (t) and

E−[(1−∆1k)R1k(β0, t)] are analogously defined. Also,

V IIk (β0) = var

{
Mz̄,1k(β0)−

{∫ τ

0

ζ+
1k(t)θ+

k (t)−1B+
1k(t)× E+[dMz̄,1k(β0)|∆1k = 1]−∫ τ

0

ζ−1k(t)θ−k (t)−1B−1k(t)× E−[dMz̄,1k(β0)|∆1k = 1]

}∣∣∣∣∆1k = 1, ξ1 = 0

}
.

θ+
k (t), θ−k (t), E+[dMz̄,1k(β0)|∆1k = 1] and

E−[dMz̄,1k(β0)|∆1k = 1] are computed likewise. Due to the
grouping, we need to split the sample to estimate the unknown
quantities separately by the sign of the second level weight.
Thus in general, a larger sample size is required to achieve
satisfactory asymptotic properties.

3.3. Generalization to Stratified Sampling Design

Suppose that a cohort of size n can be partitioned into H
mutually exclusive strata based on some first-phase covariates.
We extend the method to stratified case-cohort studies,

whereby sampling is conducted within each stratum with
possibly different sampling probabilities. Specifically, let nh
denote the number of subjects in the hth stratum in the full
cohort (h = 1, . . . ,H) and n = n1 + · · · + nH . Let
ph = nh/n. Within the hth stratum, we sample ñh subcohort
members via simple random sampling with probability being
α̃h = P (ξhi = 1) = ñh/nh. Total subcohort size ñ = ñ1 +
· · ·+ñH . Subsequently, for the kth disease outcome within the
hth stratum, we sample mhk cases outside the subcohort with
probability q̃hk = mhk/(nhk − ñhk), where nhk and ñhk are
the numbers of subjects with the kth disease outcome in the
hth stratum in the cohort and in the subcohort, respectively.



American Journal of Applied Mathematics 2021; 9(6): 192-210 198

We consider the following model with the stratified sampling
design,

λhik(t|Zhik(t)) = Yhik(t)λ0k(t)eβ
T
0 Zhik(t). (9)

We use superscript/subscript ‘ST’ to denote the stratified
version of quantities. The proposed estimator β̂STDW solves the
following estimating equation

USTDW (β) =

H∑
h=1

nh∑
i=1

K∑
k=1

∫ τ

0

w̃hik(t){Zhik(t)− Z̄k,DW (β, t)}dNhik(t) = 0, (10)

where w̃hik(t) = ∆hikξhi + (1 −∆hik)ξhiα̂
−1
hk (t) + ∆hik(1 − ξhi)ηhikq̂−1

hk (t). Estimating equation (10) utilizes weights that
are estimated within each sampling stratum. The baseline cumulative hazard function Λ0k(t) is estimated by a Breslow-Aalen
type estimator Λ̂ST0k (β̂STDW , t) where

Λ̂ST0k (β, t) =

∫ t

0

∑H
h=1

∑nh

j=1 ρhjk(u)dNhjk(u)

n
∑H
h=1

∑nh

j=1 ρhjk(u)Yhjk(u)eβ
TZhjk(u)

,

where ρhjk(u) = ∆hikξhi + (1 − ∆hik)ξhiα̂
KC
hk (u)−1 + ∆hik(1 − ξhi)ηhikq̂KChk (u)−1 is the stratified version of the weight

function used in [7].
Using arguments similar to those in Appendix 2 of the supplementary material, the asymptotic properties of β̂STDW can be

derived. It can be shown that
√
n(β̂STDW − β0) converges to a zero-mean normal distribution with variance function

G−1(β0)ΣST (β0)G−1(β0) where

ΣST (β0) =

H∑
h=1

ph[Qh(β0) +
1− α̃h
α̃h

V Ih (β0) + (1− α̃h)

K∑
k=1

pr(∆1k = 1)
1− q̃hk
q̃hk

V IIhk (β0)],

Qh(β0) = E

{∑
k

Mz̄,h1k(β0)

}⊗
2

,

V Ih (β0) = var

{∑
k

(1−∆h1k)

∫ τ

0

{Rh1k(β0, t)− µhk(t)−1Ah1k(t)E[(1−∆h1k)Rh1k(β0, t)]} × dΛ0k(t)

}
,

V IIhk (β0) = var

{
Mz̄,h1k(β0)−

{∫ τ

0

θhk(t)−1Bh1k(t)× E[dMz̄,h1k(β0)|∆h1k = 1]

}∣∣∣∣∆h1k = 1, ξh1 = 0

}
.

4. Simulation Studies
We performed extensive simulation studies to examine the

performance of the proposed doubly-weighted estimator with
finite sample size. Suppose that a case-cohort study was
conducted to investigate diseases 1 and 2 (K = 2). We
considered the following set-up. There are three covariates of
interest: Z1 and Z3 are two first-phase covariates where Z1 ∼
N(0.3, 0.462) and Z3 ∼ N(1, 0.52); Z2 is the second-phase
covariate for which values are available only for subcohort
members and sampled cases. We assumed that Z2 has a first-
phase continuous surrogate Z̃2 that follows a N(0.5, 0.52)

distribution. We introduced Z4 ∼ N(0.5, σ2
4) to represent the

presence of auxiliary covariates. We set Z2 = Z̃2 + Z4 + ε
where ε ∼ N(0, σ2

ε ) and Z̃2, Z4, ε are mutually independent.
Therefore, σ2 = σ2

4 + σ2
ε controls the correlation between Z2

and its first-phase surrogate Z̃2. Specifically, corr(Z2, Z̃2) =
(2
√

0.52 + σ2)−1.
We assumed that the marginal distribution of Tik is

exponential with failure rate λ0ke
βT
0 Zik where β0 is the true

regression parameter vector. Correlated failure time data were
generated from the Clayton-Cuzick model [19], in which the
joint survival function of Ti = (Ti1, . . . , TiK)T , denote by
S(t1i, . . . , tKi|Z1i, . . . , ZKi), has the form

{
K∑
k=1

exp(

∫ tik
0

λ0k(t)eβ
′
0Zikdt

θ
)− (K − 1)

}−θ
.

The positive parameter θ measures the strength of the
correlation among (Ti1, . . . , TiK). The relationship between θ
and Kendall’s τθ is τθ = 1/(2θ + 1). The smaller θ, the larger

Kendall’s τθ, hence the stronger the correlation. With K = 2,
the correlated pair of failure times (Ti1, Ti2) are generated
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from independent uniform variates ui1, ui2 via

Ti2 = − log(1− ui2)e−β
′
0Zi2 ,

Ti1 = θ log{(1− a) + a(1− ui1)−(1+θ)−1

}e−β
′
0Zi1 ,

where a = (1 − ui2)−θ
−1

. The baseline hazard functions
were set to 0.3 for disease 1 and 0.5 for disease 2 (K = 2).
Right-censoring time Ci = Ci1 = Ci2 was generated from the
uniform distribution on [0, r], hence the censoring percentage
was controlled by the parameter r.

4.1. Traditional Case-cohort Design

We first examined the performance of doubly-weighted
estimator under the traditional case-cohort design, using the
second level weight Aik(t) in the form of (7). We simulated
full study cohort samples of size n = 3000. We selected
a subcohort of size 300 or 450 (α̃ = 0.1 or 0.15) and then
collected all the cases outside the subcohort. Right-censoring
parameter r was selected so that the event rates were roughly
4% and 7% for diseases 1 and 2, respectively. Values 0.05,
0.50, 10 were considered for parameter θ, corresponding to

Kendall’s τθ of 0.91, 0.50, 0.05, to represent strong to weak
correlation between the two disease outcomes. Lastly, we set
σ2

4 = 0.2 and σ2
ε = 0.06 so that corr(Z2, Z̃2) = 0.7.

In our simulation where p = 3, the first-phase covariates
Ẑik,1 and Ẑik,3 were their respective observed values. For
the subjects in the subcohort and the cases, the second-phase
covariate Ẑik,2 equaled the observed values, while for non-
cases outside the subcohort Zik,2 was missing and Ẑik,2
equaled the estimated value. We postulated a linear model to
estimate the second-phase covariate Zik,2 for non-subcohort
controls. Using the fully observed data on subcohort controls
and cases, regressing Z2 on its surrogate Z̃2 yielded an R2

around 0.5. If we incorporated the first-phase covariates
Z1, Z3 and Z4, the R2 increased to 0.85. This mimicked the
situation that auxiliary information was used to improve the
capability of predicting missing Z2. We then obtained Ẑ2 for
non-subcohort controls and implemented the doubly-weighted
estimator β̂DW . For comparison purposes, we computed
estimator II, denoted β̂KC , in [7]. The estimator based on
the full cohort β̂F , which is not feasible in practice with case-
cohort designs, was also obtained as a benchmark. Results
presented were based on 2000 simulations for each setting.

Table 1. Comparison of three estimators: case-cohort design with β0 = (0.5, 0.0, 0.2)T .

β̂F β̂KC β̂DW

ñ τθ Mean ESD ESE CR Mean ESD ESE CR Mean ESD ESE CR REDW |KC

300 0.91 β1 0.500 0.329 0.325 0.95 0.515 0.463 0.450 0.94 0.495 0.329 0.331 0.94 1.98
β2 -0.002 0.095 0.095 0.95 -0.003 0.132 0.133 0.94 -0.002 0.104 0.099 0.93 1.61
β3 0.199 0.139 0.137 0.94 0.204 0.193 0.190 0.95 0.197 0.138 0.140 0.94 1.96

0.50 β1 0.500 0.278 0.277 0.95 0.513 0.421 0.413 0.95 0.495 0.279 0.284 0.94 2.28
β2 -0.001 0.083 0.081 0.95 -0.001 0.123 0.122 0.94 -0.001 0.091 0.084 0.93 1.83
β3 0.201 0.118 0.117 0.95 0.207 0.178 0.174 0.95 0.199 0.117 0.120 0.95 2.31

0.05 β1 0.504 0.257 0.263 0.95 0.517 0.406 0.403 0.95 0.499 0.258 0.270 0.95 2.48
β2 -0.002 0.078 0.077 0.95 -0.003 0.121 0.119 0.94 -0.002 0.087 0.080 0.92 1.93
β3 0.200 0.110 0.110 0.95 0.206 0.172 0.170 0.95 0.198 0.110 0.114 0.95 2.44

450 0.91 β1 0.500 0.329 0.325 0.95 0.503 0.419 0.407 0.94 0.497 0.328 0.327 0.94 1.63
β2 -0.002 0.095 0.095 0.95 -0.003 0.121 0.120 0.95 -0.002 0.103 0.097 0.93 1.38
β3 0.199 0.139 0.137 0.94 0.203 0.174 0.172 0.95 0.197 0.138 0.138 0.94 1.59

0.50 β1 0.500 0.278 0.277 0.95 0.500 0.371 0.368 0.95 0.497 0.277 0.280 0.94 1.79
β2 -0.001 0.083 0.081 0.95 -0.002 0.110 0.108 0.95 -0.001 0.091 0.083 0.92 1.46
β3 0.201 0.118 0.117 0.95 0.205 0.157 0.155 0.95 0.200 0.117 0.118 0.95 1.80

0.05 β1 0.504 0.257 0.263 0.95 0.503 0.354 0.357 0.95 0.502 0.257 0.266 0.95 1.90
β2 -0.002 0.078 0.077 0.95 -0.003 0.108 0.105 0.94 -0.002 0.086 0.078 0.92 1.58
β3 0.200 0.110 0.110 0.95 0.204 0.151 0.150 0.95 0.199 0.110 0.112 0.95 1.88

NOTE: ESD, empirical standard deviation; ESE, estimated standard error; CR, estimated standard error coverage rate of the nominal 95% confidence intervals;
REDW |KC = ESD2

KC/ESD
2
DW , efficiency of β̂DW relative to β̂KC . The full cohort contained 3000 subjects.

We considered two sets of values of true regression
parameters β0 = (0.5, 0.0, 0.2)T and β0 = (0.5, 1.2, 0.2)T .
Results summarized in Tables 1 and 2 show that the doubly-
weighted estimator was approximately unbiased. As the
subcohort size ñ increased, the average of the estimated
standard error became closer to the empirical standard
deviation and the 95% confidence interval had satisfactory
coverage rate. More importantly, β̂DW could be much more
efficient than β̂KC . In comparable scenarios, our efficiency

gain over β̂KC (RE ≈ 3) was higher than that of the
Kulich-Lin estimator over BII estimator in [6] (RE ≈ 1.1).
It was observed that as the correlation between T1 and T2

decreased, the efficiency gain increased, which means that
with smaller correlation, the decrease in the variance of β̂DW
was faster than that of β̂KC . A potential explanation is
that when correlation decreases, the estimator β̂KC is more
precise, i.e., has smaller variance. Note that the second-level
weight (7) involved β̂KC . Because β̂KC is more precise when
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the correlation between T1 and T2 decreases, this, in turn,
improves the performance of β̂DW . The relative efficiency

was smaller when the subcohort size increased, but a gain in
efficiency was still noticeable.

Table 2. Comparison of three estimators: case-cohort design with β0 = (0.5, 1.2, 0.2)T .

β̂F β̂KC β̂DW

ñ τθ Mean ESD ESE CR Mean ESD ESE CR Mean ESD ESE CR REDW |KC

300 0.91 β1 0.496 0.309 0.311 0.95 0.507 0.515 0.492 0.94 0.482 0.315 0.334 0.95 2.67
β2 1.199 0.094 0.093 0.95 1.235 0.167 0.153 0.92 1.223 0.098 0.112 0.95 2.90
β3 0.201 0.133 0.131 0.95 0.208 0.216 0.207 0.94 0.195 0.136 0.140 0.95 2.52

0.50 β1 0.497 0.267 0.269 0.95 0.507 0.480 0.459 0.93 0.484 0.275 0.290 0.95 3.05
β2 1.199 0.084 0.082 0.95 1.235 0.159 0.144 0.91 1.226 0.089 0.101 0.95 3.19
β3 0.199 0.114 0.113 0.96 0.210 0.202 0.193 0.94 0.194 0.117 0.122 0.95 2.98

0.05 β1 0.501 0.250 0.248 0.95 0.512 0.457 0.442 0.94 0.488 0.258 0.269 0.95 3.14
β2 1.201 0.077 0.075 0.94 1.234 0.152 0.137 0.91 1.229 0.083 0.095 0.94 3.35
β3 0.201 0.106 0.104 0.95 0.209 0.197 0.186 0.94 0.196 0.110 0.113 0.95 3.21

450 0.91 β1 0.496 0.309 0.311 0.95 0.504 0.448 0.436 0.95 0.485 0.312 0.324 0.96 2.06
β2 1.199 0.094 0.093 0.95 1.222 0.143 0.136 0.93 1.237 0.098 0.104 0.94 2.13
β3 0.201 0.133 0.131 0.95 0.207 0.188 0.183 0.94 0.197 0.134 0.136 0.95 1.97

0.50 β1 0.497 0.267 0.269 0.95 0.505 0.412 0.400 0.94 0.487 0.270 0.280 0.95 2.33
β2 1.199 0.084 0.082 0.95 1.222 0.135 0.126 0.93 1.238 0.088 0.093 0.93 2.35
β3 0.199 0.114 0.113 0.96 0.207 0.175 0.168 0.93 0.196 0.115 0.118 0.95 2.32

0.05 β1 0.501 0.250 0.248 0.95 0.508 0.391 0.383 0.94 0.491 0.253 0.259 0.95 2.39
β2 1.201 0.077 0.075 0.94 1.222 0.128 0.120 0.93 1.241 0.082 0.085 0.93 2.44
β3 0.201 0.106 0.104 0.95 0.208 0.170 0.161 0.93 0.197 0.108 0.109 0.95 2.48

NOTE: The full cohort contained 3000 subjects.

Table 3. Comparison of three estimators: generalized case-cohort design with β0 = (0.5, 0.0, 0.2)T .

β̂F β̂KC β̂DW

ñ τθ Mean ESD ESE CR Mean ESD ESE CR Mean ESD ESE CR REDW |KC

400 0.91 β1 0.505 0.149 0.147 0.95 0.525 0.343 0.336 0.96 0.489 0.254 0.270 0.97 1.82
β2 0.001 0.043 0.043 0.96 0.000 0.102 0.099 0.94 0.000 0.072 0.081 0.97 2.01
β3 0.199 0.059 0.062 0.96 0.201 0.143 0.142 0.96 0.201 0.106 0.114 0.97 1.82

0.50 β1 0.508 0.133 0.129 0.95 0.522 0.331 0.323 0.95 0.497 0.247 0.260 0.96 1.80
β2 0.000 0.037 0.038 0.96 -0.001 0.096 0.095 0.94 -0.001 0.069 0.077 0.98 1.94
β3 0.199 0.051 0.054 0.96 0.199 0.128 0.136 0.96 0.194 0.098 0.110 0.97 1.71

0.05 β1 0.513 0.115 0.113 0.95 0.532 0.322 0.311 0.94 0.517 0.233 0.267 0.97 1.91
β2 0.001 0.031 0.033 0.96 0.004 0.088 0.091 0.95 0.007 0.066 0.074 0.98 1.78
β3 0.198 0.046 0.047 0.96 0.203 0.125 0.131 0.96 0.203 0.100 0.106 0.97 1.56

600 0.91 β1 0.505 0.149 0.147 0.95 0.515 0.286 0.273 0.94 0.516 0.220 0.219 0.96 1.69
β2 0.001 0.043 0.043 0.96 0.001 0.082 0.080 0.94 -0.001 0.058 0.062 0.97 2.00
β3 0.199 0.059 0.062 0.96 0.197 0.114 0.115 0.94 0.198 0.086 0.091 0.97 1.76

0.50 β1 0.508 0.133 0.129 0.95 0.505 0.272 0.259 0.94 0.504 0.189 0.198 0.97 2.07
β2 0.000 0.037 0.038 0.96 0.002 0.076 0.076 0.94 -0.002 0.056 0.059 0.96 1.84
β3 0.199 0.051 0.054 0.96 0.199 0.106 0.109 0.95 0.200 0.079 0.084 0.96 1.80

0.05 β1 0.513 0.115 0.113 0.95 0.512 0.258 0.246 0.94 0.522 0.178 0.188 0.96 2.10
β2 0.001 0.031 0.033 0.96 0.003 0.072 0.072 0.96 0.001 0.049 0.056 0.97 2.16
β3 0.198 0.046 0.047 0.96 0.195 0.111 0.104 0.92 0.195 0.075 0.079 0.95 2.19

NOTE: The full cohort contained 4000 subjects.

4.2. Generalized Case-cohort Design

We then examined the performance of the doubly-weighted
estimator under a generalized case-cohort design with non-rare
diseases. In practice, it is common to take a ‘balanced’ sample
in which the numbers of cases and controls are roughly the
same. Let the proportion with disease k be Pk. By simple
algebra, we obtained that q̃k, the case sampling proportion to

achieve the expected case/control ratio Rk for disease k, is
independent of full cohort size n:

q̃k =
[(1− Pk)Rk − Pk]α̃

Pk(1− α̃)
. (11)

As was discussed in Section 2.2, generalized case-cohort
samples are obtained separately for each disease outcome k
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and overlapping subjects in the sample are allowed. Therefore,
it is not needed to adjust for the disease-specific case sampling
proportion q̃k to reflect that some subjects may have more than
one disease outcomes of interest.

We considered the full cohort size of 4000. We then selected
a subcohort of size 400 or 600 (α̃ = 0.1 or 0.15). The
right-censoring parameter r was set to 0.25 so that the event
rate was 19% for disease 1 and 28% for disease 2. Based
on (11), the corresponding vectors of qk to achieve roughly
a 1:1 case/control ratio were (0.36, 0.18) or (0.58, 0.28),
respectively.

We set both Aik(t) and Bik(t) to be in the same form as
in (7). Results based on 2000 simulations are presented in

Tables 3 and 4. Both estimators were generally unbiased.
However, when the subcohort sampling proportion was below
0.1 (results not presented), the standard deviation of β̂DW
could not be estimated accurately and the efficiency gain was
minimal. This phenomenon echoed our discussion in section
3.3 that the doubly-weighted estimator requires a larger sample
size to obtain a stable variance estimator. On the other hand,
β̂KC yielded a good standard deviation estimator regardless
of α̃. We can see that the doubly-weighted estimator is more
efficient than β̂KC , although the magnitude of the efficiency
gain was not as large compared to the traditional case-cohort
design. The correlation between the two diseases did not
appear to affect the relative efficiency.

Table 4. Comparison of three estimators: generalized case-cohort design with β0 = (0.5, 1.2, 0.2)T .

β̂F β̂KC β̂DW

ñ τθ Mean ESD ESE CR Mean ESD ESE CR Mean ESD ESE CR REDW |KC

400 0.91 β1 0.505 0.152 0.146 0.93 0.521 0.347 0.338 0.94 0.501 0.319 0.282 0.92 1.18
β2 1.200 0.048 0.046 0.94 1.225 0.100 0.101 0.95 1.183 0.085 0.088 0.94 1.38
β3 0.198 0.062 0.061 0.95 0.212 0.141 0.143 0.94 0.199 0.132 0.119 0.91 1.14

0.50 β1 0.503 0.134 0.131 0.94 0.534 0.328 0.327 0.95 0.536 0.308 0.272 0.91 1.13
β2 1.201 0.041 0.041 0.95 1.224 0.102 0.097 0.94 1.183 0.085 0.086 0.93 1.44
β3 0.200 0.055 0.055 0.95 0.202 0.137 0.138 0.95 0.192 0.128 0.113 0.92 1.15

0.05 β1 0.502 0.111 0.111 0.95 0.513 0.313 0.309 0.95 0.504 0.291 0.298 0.92 1.16
β2 1.200 0.036 0.036 0.95 1.220 0.096 0.091 0.94 1.185 0.084 0.084 0.94 1.31
β3 0.201 0.046 0.047 0.95 0.206 0.130 0.130 0.95 0.197 0.128 0.111 0.90 1.03

600 0.91 β1 0.505 0.152 0.146 0.93 0.511 0.274 0.276 0.95 0.502 0.243 0.216 0.92 1.27
β2 1.200 0.048 0.046 0.94 1.209 0.086 0.082 0.93 1.182 0.071 0.071 0.93 1.47
β3 0.198 0.062 0.061 0.95 0.197 0.115 0.116 0.95 0.200 0.102 0.091 0.92 1.27

0.50 β1 0.503 0.134 0.131 0.94 0.508 0.268 0.264 0.95 0.496 0.235 0.205 0.91 1.30
β2 1.201 0.041 0.041 0.95 1.209 0.080 0.079 0.94 1.185 0.068 0.065 0.92 1.38
β3 0.200 0.055 0.055 0.95 0.204 0.117 0.111 0.94 0.201 0.095 0.087 0.92 1.52

0.05 β1 0.502 0.111 0.111 0.95 0.499 0.241 0.246 0.96 0.499 0.219 0.197 0.91 1.21
β2 1.200 0.036 0.036 0.95 1.204 0.076 0.073 0.93 1.184 0.062 0.061 0.94 1.50
β3 0.201 0.046 0.047 0.95 0.201 0.103 0.103 0.94 0.201 0.091 0.082 0.92 1.28

NOTE: The full cohort contained 4000 subjects.

5. Data Analysis

We applied the proposed procedures to a data set from the
Atherosclerosis Risk in Communities (ARIC) study [10, 11].
The ARIC study is a large cohort study which enrolled 15,792
middle-aged men and women from four US communities.
A baseline examination was conducted from 1987 to 1989,
with 3 more examinations at roughly 3-year intervals through
1998. Participants were followed up for incident CHD,
including CHD-related death, and ischemic incident stroke,
a first definite or probable hospitalized stroke through 1998.
It was of interest to examine whether lipoprotein-associated
phospholipase, Lp-PLA2, was associated with increased risk
for incident CHD and ischemic stroke. After applying the
exclusion criteria, a total of 12,363 subjects comprised the
full cohort for this analysis. In order to preserve stored
plasma samples and reduce cost, case-cohort studies were
implemented, one for CHD and one for stroke. Specifically,
a subcohort of participants was sampled. This subcohort
together with those participants who have had CHD by

12/31/1998 constitute the case-cohort sample for the CHD
case-cohort study. Similarly, the case-cohort study for stroke
contains participants who are in the subcohort and those who
have had stroke by 12/31/1998. For participants who are in
either case-cohort study, their stored blood sample from visit 1
was thawed and measured for Lp-PLA2.

Those who were still alive or disease-free by 12/31/1998 or
lost to follow-up were treated as censored at 12/31/1998 or
at the last contact, respectively. The subcohort was selected
using stratified sampling based on gender, race (white versus
black), and age group (below versus above 55). Table 5
shows participants’ characteristics at visit 2 among different
subgroups.

In this analysis, the two disease outcomes of interest were
incident CHD and incident ischemic stroke. A total of 603
CHD cases and 183 ischemic incident stroke cases, along with
777 subcohort subjects, were included in the sample. As
some participants had both disease outcomes, the total number
of serum samples assayed was 1,470. The main exposure
of interest was the tertile group indicators of Lp-PLA2
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(low/moderate/high Lp-PLA2, with the reference level being
the low Lp-PLA2 group). Potential confounders included in
the model were three first-phase stratum covariates, age at
visit 2, gender and race, so that our model was comparable
to model 1 in [10]. We used a disease-specific effect model for
CHD and stroke to allow different effects for the same set of
covariates. This resulted in a total of 10 regression parameters
to be estimated.

We implemented the proposed doubly-weighted estimator
β̂DW with second level weight (7). To this end, we built
a prediction model for the second-phase covariate Lp-PLA2

(in mg/dL) among non-subcohort controls. The first-phase
covariates used in the regression model for Lp-PLA2 were
race, gender, LDL-C, HDL-C and smoking status (never
smoked/former smoker/current smoker). We assigned the
tertile group indicators based on the predicted values. For
comparison purposes, we calculated β̂KC , the estimator in
[7]. We used the stratified version of estimating equation
(10) and variance estimators to accommodate the stratified
sampling nature of this ancillary study to the ARIC study.
The coefficient estimates, standard errors and associated p-

values are presented in table 6. There was fair agreement
between the two methods in terms of point estimates. The
findings matched those reported in univariate analyses [10, 11].
In terms of efficiency, β̂DW outperformed β̂KC : despite a
negligible (no more than 6%) increase in standard errors of
3 parameter estimates, β̂DW yielded noticeably more efficient
results elsewhere. The most noteworthy finding was for the
high Lp-PLA2 group: using the doubly-weighted estimator,
we had strong evidence that it was significantly associated with
elevated incident CHD risk (HR: 1.729, 95% CI: 1.092, 2.736),
compared to the low Lp-PLA2 group. On the other hand, β̂KC
deemed the effect non-significant (HR: 1.567, 95% CI: 0.846,
2.903). Other first-phase risk factors that were statistically
associated with elevated risks were advancing age (CHD and
stroke), white race (CHD) and male sex (stroke). Based on
β̂DW , we performed a Wald test with 2 degrees of freedom to
compare the corresponding coefficients for the Lp-PLA2 group
indicators between the two diseases. The p-value for the Wald
test was 0.6580, suggesting the Lp-PLA2 effects for the two
diseases were not significantly different.

Table 5. Baseline Characteristics of the ARIC Study.

CHD (n=604) Stroke (n = 183) Subcohort (n = 777) Full (n = 12,363)
Age (SD), years 58.6 (5.44) 59.7 (5.54) 56.9 (5.57) 56.8 (5.70)
Male Sex, % 67.7 55.7 42.7 42.2
White Race, % 77.1 56.8 75.2 75.6
Lp-PLA2 (SD), mg/L 0.427 (0.14) 0.451 (0.17) 0.378 (0.13) N/A
Lp-PLA2: Moderate †, % 31.5 22.4 33.9 N/A
Lp-PLA2: High ‡, % 48.0 53.6 34.4 N/A

†Lp-PLA2 between 0.310 and 0.422 mg/L
‡Lp-PLA2 above 0.422 mg/L

Table 6. Coefficient Estimates of Disease-Specific Effect Model.

β̂DW β̂KC

Estimate Std Err P-value Estimate Std Err P-value
Disease: CHD
Age in years/10 0.5279 0.1076 < .0001 0.4756 0.2020 0.0185
Male sex 1.0346 0.2411 < .0001 0.9798 0.2730 0.0003
White race -0.0904 0.2359 0.7016 -0.1692 0.2591 0.5137
Lp-PLA2: Moderate 0.4135 0.3469 0.2333 0.2573 0.3296 0.4350
Lp-PLA2: High 0.5474 0.2343 0.0195 0.4490 0.3146 0.1535
Disease: Stroke
Age in years/10 0.9702 0.2297 < .0001 1.0108 0.4175 0.0155
Male sex 0.6109 0.4134 0.1395 0.4328 0.4413 0.3267
White race -0.9571 0.3936 0.0150 -1.2054 0.3906 0.0020
Lp-PLA2: Moderate -0.1162 0.6003 0.8465 -0.2028 0.5989 0.7349
Lp-PLA2: High 0.4435 0.3697 0.2303 0.6961 0.4849 0.1511

6. Recommendations
(Generalized) case-cohort designs have been widely used

in medical studies when it is prohibitively costly to measure
some exposures for all subjects in the full cohort. In this
research, we proposed a class of doubly-weighted estimators
for multiple disease outcomes. With the choice of second

level weights Aik(t) and Bik(t) being almost arbitrary, this
class encompasses many estimators as special cases including
that in [7]. We derived the doubly-weighted estimating
equation and the asymptotic properties associated with the
estimator solving it. We then implemented the method using a
specific form of second level weight which utilized first-phase
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covariate information collected. Simulation studies showed
considerable efficiency gain over the estimator in [7] and the
method was also applied on the data from ARIC study.

In univariate generalized case-cohort design, the power of
the design could depend on various factors such as event rate,
distribution of exposure/covariates, etc [15]. Reference [20]
derived the optimal allocation for stratified case-cohort studies
under various situations with only one disease outcome. It will
be of interest to investigate the optimal allocation with multiple
disease outcomes.

With multiple time-to-event outcomes, an alternative to the
(generalized) case-cohort design is the nested case-control
design, e.g., references [21, 22]. It will also be of interest to
compare the performances of the two classes of designs. In
terms of utilizing auxiliary information to improve efficiency,
it may also be of interest, to explore whether the calibration
approach [13, 14] can be generalized to the multivariate
failure time case, where the variance-covariance matrix among
the coefficients need to be properly handled. For the
traditional case-cohort design, reference [23] proposed a class
of updated estimators to improve the efficiency using auxiliary
information. Extending their method to the generalized case-
cohort setting could be another direction of future research.

When implementing the doubly-weighted estimator with
second level weight (7), we need to build a prediction
model for the unobserved second-phase covariates. In both
simulation studies and the real data application, we chose to
build the model using linear regression. Kernel regression
and polynomial regression with carefully calibrated smoothing
parameter can be explored, if flexible forms of the covariates
are desired. Other choices of second level weights are possible.
For example, in a similar fashion to [24], we can incorporate
the Nadaraya-Watson kernel estimator in the second level
weight.

Throughout this paper, we have assumed a Cox-type
marginal proportional hazards model. Additive hazards
models, which model risk differences, have often been used
as an alternative to the proportional hazards model. For
data arising from multiple case-cohort studies, reference [25]
proposed a marginal additive hazards model based on a
weighted estimating equation approach. They also considered
the generalized case-cohort design. To improve efficiency,
extending the proposed doubly-weighted approach to the
marginal additive hazards model will allow us to make full use
of first-phase covariate information, and thus may merit further
investigation.

Appendix

Appendix 1. Explicit Form of DDW (β)

Due to the matrix nature of S(0)
k,DW (β, t), special attention is required to compute DDW (β). Let l, l′ = 1, . . . , p, we can

explicitly express w̃ik(t) and Zik(t):

w̃ik(t) = diag{w̃ik,1(t), w̃ik,2(t), . . . , w̃ik,p(t)}, Zik(t) = [Zik,1(t), Zik,2(t), . . . , Zik,p(t)]
T .

Define the scalar functions

S
(0)
k,DW,l(β, t) = n−1

n∑
i=1

w̃ik,l(t)Yik(t)exp{βTZik(t)},

S
(1)
k,DW,ll′(β, t) = n−1

n∑
i=1

w̃ik,l(t)Zik,l′(t)Yik(t)exp{βTZik(t)},

and

S
(2)
k,DW,ll′(β, t) = n−1

n∑
i=1

w̃ik,l(t)Zik,l(t)Zik,l′(t)Yik(t)exp{βTZik(t)}.

Let Vk,DW (β, t) be the derivative of −Z̄k,DW (β, t) with respect to β. We have

DDW (β) =
∂UDW (β)

∂βT
=

K∑
k=1

∫ τ

0

w̃ik(t)Vk,DW (β, t)d

n∑
i=1

Nik(t),

where the lth row of Vk,DW (β, t) has the form

S
(0)
k,DW,l(β, t)

−2

{
S

(1)
k,DW,ll(β, t)[S

(1)
k,DW,l1(β, t), . . . , S

(1)
k,DW,lp(β, t)]− [S

(2)
k,DW,l1(β, t), . . . , S

(2)
k,DW,lp(β, t)]S

(0)
k,DW,l(β, t)

}
.

Appendix 2. Proof of Theorem 1

The following two lemmas are important in deriving the asymptotic results and are applied repeatedly.
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Lemma 6.1. Let ξ = (ξ1, ..., ξn)T be a random vector containing ñ ones and n− ñ zeros, with each permutation equally likely.
Let Bi(t), i = 1, ..., n be independent and identically distributed real-valued random processes on [0, τ ] with E[Bi(t)] = µB(t),
var(Bi(0)) <∞ and var(Bi(τ)) <∞. LetB(t) = {B1(t), ..., Bn(t)}T and ξ be independent. Suppose that almost all paths of
Bi(t) have finite variation. Then, n−1/2

∑n
i=1 ξi{Bi(t)−µB(t)} converges weakly in l∞[0, τ ] to a zero-mean Gaussian process

and therefore n−1
∑n
i=1 ξi{Bi(t)− µB(t)} converges in probability to 0 uniformly in t.

This lemma is stated as Lemma A1 in [7]. Its proof involves the central limit theorem for finite population sampling from [26]
and example 3.6.14 of [27]. A special case of this lemma is obtained by setting ξ = Jn where Jn is an n-vector of ones.

We need the following results on the asymptotic properties of α̂k(t) and q̂k(t). We present and prove Lemma B6.2, Lemma
B6.4 and Theorem 1 assuming a single covariate in (1). With multiple covariates, α̂k(t), q̂k(t) and S(0)

k,DW (β, t) are p-by-p
diagonal matrices, and the arguments below pertain to each of the p processes on the diagonal.

Lemma 6.2.

n1/2(α̂k(t)−1 − α̃−1) = {α̃µk(t)}−1n−1/2
n∑
i=1

(1− ξi/α̃)(1−∆ik)Aik(t) + op(1), (12)

in which µk(t) is defined as E[(1−∆1k)A1k(t)]. Also, we have similar results for q̂k(t):

n1/2(q̂k(t)−1 − q̃−1
k ) = {q̃k(1− α̃)θk(t)}−1n−1/2

n∑
i=1

(1− ηik/q̃k)∆ik(1− ξi)Bik(t) + op(1), (13)

in which θk(t) = E[∆1kB1k(t)].
The detailed proof for equation (12), which utilizes assumptions 10 to 12, the special case of Lemma B6.1 and the functional

delta method, can be found in [12]. Since the failure times for each disease are independently distributed, the proof of (12) can
go through without modification. Equation (13) can be shown analogously.

We need another technical lemma from [28].
Lemma 6.3. Let W (t) and Z(t) be two sequences of bounded processes. Suppose that W (t) is monotone and converges to

w(t) uniformly in t in probability and that Z(t) converges weakly to a zero-mean process with continuous sample paths. Then∫ t

0

{W (u)− w(u)}dZ(u)→ 0,

∫ t

0

Z(u)d{W (u)− w(u)} → 0

uniformly in t in probability.
The next lemma states the uniform convergence of Z̄k,DW (β, t), to the limit of its full cohort counterpart.
Lemma 6.4. (Convergence of the at-risk average process) For any k,

sup
β,t

∥∥Z̄k,DW (β, t)− z̄k(β, t)
∥∥→p 0.

Proof We first show that supβ,t ‖S
(d)
k,DW (β, t)− S(d)

k,F (β, t)‖ →p 0 uniformly in t and β for d = 0, 1. We start with

S
(d)
k,DW (β, t)− S(d)

k,F (β, t) = n−1
∑
i

{w̃ik(t)− 1}Zdik(t)eβ
TZik(t)Yik(t)

Expanding the weight function w̃ik(t) and rearranging terms on the right-hand side (RHS), we get

S
(d)
k,DW (β, t)− S(d)

k,F (β, t) = n−1
∑
i

(
ξi
α̃
− 1)Zdik(t)eβ

TZik(t)Yik(t)

− n−1
∑
i

(
ηik
q̃k
− 1)∆ikξiZ

d
ik(t)eβ

TZik(t)Yik(t)

− n−1
∑
i

(
ξi
α̃
− 1)∆ikZ

d
ik(t)eβ

TZik(t)Yik(t)

+ n−1
∑
i

(
ηik
q̃k
− 1)∆ikZ

d
ik(t)eβ

TZik(t)Yik(t)

+ n−1
∑
i

(α̂k(t)−1 − α̃−1)(1−∆ik)ξiZ
d
ik(t)eβ

TZik(t)Yik(t)

+ n−1
∑
i

(q̂k(t)−1 − q̃−1
k )∆ik(1− ξi)ηikZdik(t)eβ

TZik(t)Yik(t).
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Taking the norm on both sides,∥∥∥S(d)
k,DW (β, t)− S(d)

k,F (β, t)
∥∥∥

≤

∥∥∥∥∥n−1
∑
i

(
ξi
α̃
− 1)Zdik(t)eβ

TZik(t)Yik(t)

∥∥∥∥∥ (14)

+

∥∥∥∥∥n−1
∑
i

(
ηik
q̃k
− 1)∆ikξiZ

d
ik(t)eβ

TZik(t)Yik(t)

∥∥∥∥∥ (15)

+

∥∥∥∥∥n−1
∑
i

(
ξi
α̃
− 1)∆ikZ

d
ik(t)eβ

TZik(t)Yik(t)

∥∥∥∥∥ (16)

+

∥∥∥∥∥n−1
∑
i

(
ηik
q̃k
− 1)∆ikZ

d
ik(t)eβ

TZik(t)Yik(t)

∥∥∥∥∥ (17)

+

∥∥∥∥∥n−1
∑
i

(α̂k(t)−1 − α̃−1)(1−∆ik)ξiZ
d
ik(t)eβ

TZik(t)Yik(t)

∥∥∥∥∥ (18)

+

∥∥∥∥∥n−1
∑
i

(q̂k(t)−1 − q̃−1
k )∆ik(1− ξi)ηikZdik(t)eβ

TZik(t)Yik(t)

∥∥∥∥∥ . (19)

We now show each of the six terms converges to 0 in probability uniformly in β and t. (14) converges to 0 in probability
uniformly in t by the special case of Lemma B6.1. Specifically,

‖n−1
∑
i

(
ξi
α̃
− 1)Zdik(t)eβ

TZik(t)Yik(t)‖ = ‖n−1
∑
i

ξi
α̃
Zdik(t)eβ

TZik(t)Yik(t)− n−1
∑
i

Zdik(t)eβ
TZik(t)Yik(t)‖.

By iterated expectation argument conditioning on everything but ξi, it is clear that
E[ ξiα̃Z

d
ik(t)eβ

TZik(t)Yik(t)] = E[Zdik(t)eβ
TZik(t)Yik(t)] = µB(t). Also, by assumption, ξi

α̃Z
d
ik(t)eβ

TZik(t)Yik(t) has finite
variation on [0, τ ]. Hence, the aforementioned lemma guarantees the convergence of (14) to 0, uniformly in t and β. Through
similar arguments, (15) - (17) converge to 0 in probability uniformly in t and β, respectively.

We then show that (18) converges to 0 in probability uniformly in t and β. By the Cauchy-Schwarz inequality,

‖n−1
∑
i(α̂k(t)−1 − α̃−1)(1−∆ik)ξiZ

d
ik(t)eβ

TZik(t)Yik(t)‖
≤ ‖α̂k(t)−1 − α̃−1‖ · n−1

∑
i(1−∆ik)ξi‖Zdik(t)‖eβTZik(t)Yik(t),

The latter converges to 0 in probability, uniformly in t and β. This can be justified by noting α̂k(t)−1 − α̃−1 converges to 0 in
probability uniformly in t, in view of Lemma B6.2. Also by the Lindeberg condition, n−1

∑
i(1−∆ik)ξi‖Zdik(t)‖eβTZik(t)Yik(t)

converges to a finite quantity. Likewise, (19) can be shown to converge to 0 in probability uniformly in t and β. Therefore, we
have shown that supβ,t ‖S

(d)
k,DW (β, t) − S(d)

k,F (β, t)‖ →p 0 uniformly in t and β, for d = 0, 1. This result, in combination with

assumption 6, leads to the conclusion that supβ,t ‖S
(d)
k,DW (β, t)− s(d)

k (β, t)‖ →p 0 uniformly in t and β.
To obtain the main result of the lemma, we start with

sup
β,t

∥∥Z̄k,DW (β, t)− z̄k(β, t)
∥∥ = sup

β,t

∥∥Z̄k,DW (β, t)− Z̄k,F (β, t) + Z̄k,F (β, t)− z̄k(β, t)
∥∥

≤ sup
β,t

∥∥Z̄k,DW (β, t)− Z̄k,F (β, t)
∥∥

+ sup
β,t

∥∥Z̄k,F (β, t)− z̄k(β, t)
∥∥

Clearly, the second term on the RHS of the inequality converges to 0 in probability based on the full data result. The first term
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can be written as:

sup
β,t

∥∥∥∥∥S
(0)
k,F (β, t){S(1)

k,DW (β, t)− S(1)
k,F (β, t)}+ S

(1)
k,F (β, t){S(0)

k,F (β, t)− S(0)
k,DW (β, t)}

S
(0)
k,DW (β, t)S

(0)
k,F (β, t)

∥∥∥∥∥
≤ sup

β,t

∥∥∥∥∥S
(0)
k,F (β, t){S(1)

k,DW (β, t)− S(1)
k,F (β, t)}

S
(0)
k,DW (β, t)S

(0)
k,F (β, t)

∥∥∥∥∥
+ sup

β,t

∥∥∥∥∥S
(1)
k,F (β, t){S(0)

k,F (β, t)− S(0)
k,DW (β, t)}

S
(0)
k,DW (β, t)S

(0)
k,F (β, t)

∥∥∥∥∥ .
Both terms converge to 0 in probability by assumption 6 and that supβ,t ‖S

(d)
k,DW (β, t) − S(d)

k,F (β, t)‖ →p 0 uniformly in t
and β, for d = 0, 1. This completes the proof. We are now in place to prove theorem 1. Proof The consistency of β̂DW can
be shown by the extension of [29]. Denote n−1UDW (β) by ŨDW (β). β̂DW is consistent if all four conditions below hold:
(i) ∂ŨDW (β)/∂βT exists and is continuous in an open neighborhood B of β0; (ii) ∂ŨDW (β)/∂βT is negative definite with
probability going to one as n → ∞; (iii) −∂ŨDW (β)/∂βT converges to G(β0) in probability uniformly for β in an open
neighborhood of β0; (iv) ŨDW (β) converges to 0 in probability.

We need to verify the four conditions to establish consistency. The form of ∂ŨDW (β)/∂βT was given in Appendix 1, hence
(i) holds due to the continuity of each part. (ii) and (iii) are satisfied if we can show ‖ − ∂ŨDW (β)/∂βT −G(β)‖ converges to
0 in probability uniformly in β ∈ B as n→∞. We make the decomposition∥∥∥∥∥−∂ŨDW (β)

∂βT
−G(β)

∥∥∥∥∥ ≤

∥∥∥∥∥
K∑
k=1

∫ τ

0

{Vk,DW (β, t)− vk(β, t)}n−1d

n∑
i=1

Nik(t)

∥∥∥∥∥
+

∥∥∥∥∥
K∑
k=1

∫ τ

0

vk(β, t)n−1d

n∑
i=1

Mik(t)

∥∥∥∥∥
+

∥∥∥∥∥
K∑
k=1

∫ τ

0

vk(β, t){S(0)
k,DW (β, t)− s(0)

k (β, t)}dΛ0k(t)

∥∥∥∥∥ . (20)

Each term on the RHS of (20) will be shown to converge to 0, uniformly in β ∈ B. While proving Lemma B6.4, we showed
that supβ,t ‖S

(d)
k,DW (β, t) − s(d)

k (β, t)‖ →p 0 uniformly in t and β, for d = 0, 1. From the derivation in Appendix 1, it follows
naturally that Vk,DW (β, t) converges to vk(β, t) uniformly in t and β. By the Lenglart inequality, for any δ, ρ > 0, there exists
n0 such that for n ≥ n0,

P [n−1N̄k(τ) > c] ≤ δ

c
+ P [

∫ τ

0

S
(0)
k,DW (β0, t)λ0k(t)dt > δ].

By assumption 6, for δ >
∫ τ

0
s

(0)
k (β0, t)λ0k(t)dt, P [

∫ τ
0
S

(0)
k,DW (β0, t)λ0k(t)dt > δ] → 0 as n → ∞. Then

limc↑∞ limn→∞ P [n−1N̄k(τ) > c] = 0. Therefore, the first term on the RHS converges to 0 in probability uniformly in β ∈ B
as n→∞.

For the second term, n−1
∑n
i=1

∫ τ
0
vk(β, t)dMik(t) is a local square integrable martingale. The Lenglart inequality implies

that, for any δ, ρ > 0, there exists n0 such that for n ≥ n0,

P

[∥∥∥∥n−1

∫ τ

0

{vk(β, t)}ll′dM̄k(t)

∥∥∥∥ > ρ

]
≤ δ

ρ2
+ P

[
n−1

∫ τ

0

{vk(β, t)}2ll′S
(0)
k,DW (β0, t)λ0k(t)dt > δ

]
where the subscript ll′ denotes the (l, l′) element of the matrix. Assumptions 5-7 ensure that
P [n−1

∫ τ
0
{vk(β, t)}2ll′S

(0)
k,DW (β0, t)λ0k(t)dt > δ] converges to 0 in probability uniformly in β ∈ B for any δ. Then the second

term on the RHS of (20) also converges to 0 in probability uniformly in β ∈ B as n→∞, since δ can be arbitrarily small.
Finally, by assumptions 4-6 and uniform convergence of S(0)

k,DW (β, t) to s(0)
k (β, t) in probability, the last term on the RHS of

(20) converges to 0 uniformly in β ∈ B as n → ∞. Therefore, the left-hand side of (20) converges to 0 uniformly in β ∈ B as
n→∞. Then conditions (ii) and (iii) are satisfied.

Convergence of ŨDW (β) to zero in probability shows that (iv) is satisfied. Therefore, β̂DW is a consistent estimator of β0.
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To establish the asymptotic normality of the doubly-weighted score process, we make the decomposition of n−1/2UDW (β0)

n−1/2UDW (β0) = n−1/2
n∑
i=1

K∑
k=1

∫ τ

0

w̃ik(t){Zik(t)− Z̄k,DW (β, t)}dNik(t)

= n−1/2
n∑
i=1

K∑
k=1

∫ τ

0

w̃ik(t){Zik(t)− Z̄k,DW (β, t)}dMik(t)

= n−1/2
∑
k

∑
i

∫ τ

0

{Zik(t)− z̄k(β0, t)}dMik(t) (21)

+ n−1/2
∑
k

∑
i

∫ τ

0

{z̄k(β0, t)− Z̄k,DW (β, t)}dMik(t) (22)

+ n−1/2
∑
k

∑
i

∫ τ

0

(w̃ik(t)− 1){Zik(t)− z̄k(β0, t)}dMik(t) (23)

+ n−1/2
∑
k

∑
i

∫ τ

0

(w̃ik(t)− 1){z̄k(β0, t)− Z̄k,DW (β, t)}dMik(t) (24)

+ op(1).

Using the example in 2.11.16 of [27], the Kolmogorov-Centsov theorem, Lemma B6.2 and B6.3, (22) and (24) can be shown
to converge to 0 in probability, uniformly in t. In [18], (21) was shown to converge to a zero mean normal distribution with
covariance matrix Q(β0), where Q(β0) = E[

∑K
k=1

∫ τ
0
Z̃ik(β, t)dMik(t)]

⊗
2.

We can further decompose (23) by expanding w̃ik(t):

n−1/2
∑
k

∑
i

∫ τ

0

(w̃ik(t)− 1)dMz̄,ik(β0, t) (25)

= n−1/2
∑
k

∑
i

(1−∆ik)ξi

∫ τ

0

(α̂−1
k (t)− α̃−1)dMz̄,ik(β0, t) (26)

+ n−1/2
∑
k

∑
i

∆ik(1− ξi)ηik
∫ τ

0

(q̂−1
k (t)− q̃−1

k )dMz̄,ik(β0, t) (27)

+ n−1/2
∑
k

∑
i

(1−∆ik)(ξiα̃
−1 − 1)Mz̄,ik(β0) (28)

+ n−1/2
∑
k

∑
i

∆ik(1− ξi)(ηikq̃−1
k − 1)Mz̄,ik(β0). (29)

By (12), (26) is equal to

n−1/2
∑
k

∑
i

(1−∆ik)ξi ×
∫ τ

0

[{α̃µk(t)}−1n−1
∑
j

(1− ξjα̃−1)(1−∆jk)Ajk(t)]Z̃ik(β0, t)dMik(t)

= −n−1/2
∑
k

∑
i

(1−∆ik)(ξiα̃
−1 − 1)×

∫ τ

0

µk(t)−1Aik(t){n−1
∑
j

ξjα̃
−1(1−∆jk)Z̃jk(β0, t)dMjk(t)}

= n−1/2
∑
k

∑
i

(1−∆ik)(ξiα̃
−1 − 1)×

∫ τ

0

µk(t)−1Aik(t){n−1
∑
j

ξjα̃
−1(1−∆jk)Z̃jk(β0, t)Yjk(t)eβ

T
0 Zjk(t)}dΛ0k(t).

The last equation is obtained by a martingale decomposition of Mjk(t) and the fact that (1−∆jk)dNjk(t) = 0. Similarly, we
have (28) equal to

−n−1/2
∑
k

∑
i

(1−∆ik)(ξiα̃
−1 − 1)Z̃ik(β0, t)Yik(t)eβ

T
0 Zik(t)dΛ0k(t)

= −n−1/2
∑
k

∑
i

(1−∆ik)(ξiα̃
−1 − 1)Rik(β0, t)dΛ0k(t).
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The quantity n−1
∑
j ξjα̃

−1(1 − ∆jk)Z̃jk(β0, t)Yjk(t)eβ
T
0 Zjk(t) converge in probability to E[(1 − ∆1k)R1k(β0, t)]

uniformly in t, by the special case of Lemma B6.1. We can then combine (26) and (28) and can show that the combined term is
asymptotically equivalent to

n−1/2
∑
k

∑
i

(1−∆ik)(ξiα̃
−1 − 1)

∫ τ

0

{µk(t)−1Aik(t)E[(1−∆1k)R1k(β0, t)]−Rik(β0, t)}dΛ0k(t). (30)

Repeating the above procedure to combine (27) and (29), their summation is asymptotically equivalent to

n−1/2
∑
k

∑
i

∆ik(1− ξi)(ηikq̃−1
k − 1)[Mz̄,ik(β0)−

∫ τ

0

θk(t)−1Bik(t)E[∆1kdMz̄,k1(β0, t)]]. (31)

By Lemma B6.1 and B6.2, both (30) and (31) can be shown to converge to a zero mean normal distribution.
By the law of total expectation, the three terms (21), (30) and (31) are pairwise uncorrelated, which implies independence

under normality. Specifically, the covariances between (30) and (31), (21) and (31) are both 0 by conditioning on filtration
F(τ) and ξ. The covariance between (21) and (30) is 0 by conditioning on F(τ). Therefore, n−1/2UDW (β0) is asymptotically
normally distributed with mean zero and we can compute the contributions of (21), (30) and (31) to the asymptotic variance
separately.

Following conditional arguments, the second component (30) has asymptotic variance 1−α̃
α̃ V I(β0), in which

V I(β0) = var

{ K∑
k=1

(1−∆1k)

∫ τ

0

{R1k(β0, t)− µ−1
k (t)A1k(t)E[(1−∆1k)R1k(β0, t)]}dΛ0k(t)

}
.

Similarly, the asymptotic variance of (31) is (1− α̃)
∑K
k=1 pr(∆1k = 1) 1−q̃k

q̃k
V IIk (β0), where

V IIk (β0) = var

{
Mz̄,1k(β0)−

∫ τ

0

θk(t)−1B1k(t)E[∆1kdMz̄,1k(β0, t)]|∆1k = 1, ξ1 = 0

}
.

The desirable asymptotic distribution of β̂DW then follows from the Taylor expansion of UDW (β̂DW ) around β0 and Slutsky’s
theorem.

The quantitiesG(β0),Q(β0), 1−α̃
α̃ V I(β0) and (1−α̃)

∑K
k=1 pr(∆1k = 1)V IIk (β0) can be consistently estimated by Ĝ(β̂DW ),

Q̂(β̂DW ), 1−α̃
α̃ V̂ I(β̂DW ) and (1− α̃)

∑
k p̂r(∆1k = 1)V̂ IIk (β̂DW ), respectively, where

Ĝ(β) = −n−1DDW (β), Q̂(β) = n−1
n∑
i=1

ξi
α̃

[ K∑
k=1

M̂z̄,ik(β)

]⊗ 2

,

where

M̂z̄,ik(β) = ∆ik[Zik(Xik)− S(0)
k,DW (β,Xik)−1S

(1)
k,DW (β,Xik)]

− n−1
n∑
j=1

∆jkYik(Xjk)eβ
TZik(Xjk)

Ŝ
(0)
k,KC(β,Xjk)

ρjk(Xjk)[Zik(Xjk)− S(0)
k,DW (β,Xjk)−1S

(1)
k,DW (β,Xjk)],

V̂ I(β) = n−1
n∑
i=1

ξi
α̃

[ K∑
k=1

(1−∆ik) · n−1
n∑
j=1

∆jk

Ŝ
(0)
k,KC(β,Xjk)

· ρjk(Xjk)

× {R̂ik(β,Xjk)− µ̂k(Xjk)−1Aik(Xjk)Ê[(1−∆1k)R1k(β,Xjk)]}
]⊗ 2

−
[
n−1

n∑
i=1

ξi
α̃

K∑
k=1

(1−∆ik) · n−1
n∑
j=1

∆jk

Ŝ
(0)
k,KC(β,Xjk)

· ρjk(Xjk)

× {R̂ik(β,Xjk)− µ̂k(Xjk)−1Aik(Xjk)Ê[(1−∆1k)R1k(β,Xjk)]}
]⊗ 2

,
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V̂ IIk (β) = (nk − ñk)−1
n∑
i=1

ηik
q̃k

[
M̂z̄,ik(β)− (nk − ñk)−1 ×

n∑
j=1

∆jk(1− ξj)
ηjk
q̃k
θ̂k(Xjk)−1Bik(Xjk)(Zjk(Xjk)− S(0)

k,DW (β,Xjk)−1S
(1)
k,DW (β,Xjk))

+ n−1
n∑
j=1

∆jk

Ŝ
(0)
k,KC(β,Xjk)

ρjk(Xjk)θ̂k(Xjk)−1Bik(Xjk)Ê[R1k(β,Xjk)|∆1k = 1, ξi = 0]

]⊗ 2

−
[
(nk − ñk)−1

n∑
i=1

ηik
q̃k

(
M̂z̄,ik(β)− (nk − ñk)−1 ×

n∑
j=1

∆jk(1− ξj)
ηjk
q̃k
θ̂k(Xjk)−1Bik(Xjk)(Zjk(Xjk)− S(0)

k,DW (β,Xjk)−1S
(1)
k,DW (β,Xjk))

+ n−1
n∑
j=1

∆jk

Ŝ
(0)
k,KC(β,Xjk)

ρjk(Xjk)θ̂k(Xjk)−1Bik(Xjk)Ê[R1k(β,Xjk)|∆1k = 1, ξi = 0]

)]⊗ 2

R̂ik(β, t) = {Zik(t)− S(0)
k,DW (β, t)−1S

(1)
k,DW (β, t)}Yik(t)eβ

TZik(t),

µ̂k(t) = n−1
n∑
i=1

(1−∆ik)Aik(t),

Ê[(1−∆1k)R1k(β, t)] = n−1
n∑
i=1

ξi
α̃

(1−∆ik)R̂ik(β, t),

θ̂k(t) = n−1
n∑
i=1

∆ikBik(t),

Ê[R1k(β, t)|∆1k = 1, ξ1 = 0] = (nk − ñk)−1
n∑
l=1

∆lk(1− ξl)
ηlk
q̃k
R̂lk(β, t).
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