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Abstract: Since the pioneering work of Hurst, and Mandelbrot, the fractional brownian motions have played and increasingly
important role in many fields of application such as hydrology, economics and telecommunications. For every value of the
Hurst index H ∈ (0, 1) we define a stochastic integral with respect to fractional Brownian motion of index H. This process
is called a (standard) fractional Brownian motion with Hurst parameter H. To simplify the presentation, it is always assumed
that the fractional Brownian motion is 0 at t=0. If H = 1/2, then the corresponding fractional Brownian motion is the usual
standard Brownian motion. If 1/2 < H < 1, Fractional Brownian motion (FBM) is neither a finite variation nor a semi-
martingale. Consequently, the standard Ito calculus is not available for stochastic integrals with respect to FBM as an integrator
if 1/2 < H < 1. The classic methods (Itô and Stiliege) are excluted. The most studied case is that where H is between 0 and
1/2. Several attempts to define the stochastic integral are made. But so far some difficulties subjust. We give in this paper, several
construction methods. So for the construction, we will use other tools to deal with such situations.

Keywords: Wiener Integral, Fractional Brownian Motion, Martingale, Processus d’Ito

1. Introduction

Stochastic calculus is the study of random phenomena
depending on the time. As such, it is an extension of
probability theorie [10].

The heart of probabilistic tools lies in the stochastic calculus
which is not nothing more than a differential calculus, but
adapted to the trajectories of the processes stochastics that
are not differentiable [18]. Differential calculus presents a
theory of the integration of a stochastic (integrating) process
with respect to another integrator, in order to solve stochastic
differential equations which serve as mathematical models for
systems involving two types of forces, one deterministic and
the other random [15].

The stochastic integral
∫ t

0
f(s,Ws)dWs is called Wiener’s

integral for f(s,Ws) = f(s). deterministic and is called
ito integral in the general case of random f(s,Ws). Our
construction of the Wiener integral for f derivable functions
can therefore be extended to any integrable square function
f, keeping the stated properties. Indeed, for f of integrable

square, let us take a sequence (fn)n of regular functions
converging quadratically towards f :

∫ t
0
(f − fn)2(s)ds → 0.

This sequence of functions is Cauchy in L2(Ω, P ) and by
isometry, the sequence of random variables (

∫ t
0
fn(s)dWs)n

is cauchy in L2(Ω, P ).
The Itô integral makes it possible to give meaning to most

of the different equations stochastic ferentials from applied
sciences [11]. But she has any time a limit: it only makes
it possible to treat adapted integrals(or more pregradually
measurable). Gaussian processes provide many examples of
processes that are not semi-martingales among them fractional
Brownian motion is widely used [12].

In 1993, Russia and P. Vallois [7] laid the first foundations
for a stochastic calculus, generalizing the more classic ones
of ito and tratonovich, one of the interests of which is that
it makes it possible to give meaning to integrals against
processses that are not not necessarily semi-martingales [14].

Gaussian processes provide many examples of processes
that are not semimartingale. Among gaussian processes,
fractional Brownian motion is widely used, its covariance
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function being particularity simple. This is why, in folliwing,
this process will be used to test the general results that we will
establish [4].

2. Russo and Vallois Method
In this part, we present new results to the theory generalized

stochastic calculus developed by Russo and Vallois from 1993

wih makes it possible to give a meaning to integrals which are
not necessarily semi-martingales.

2.1. Definition

Let X = {Xt, t ∈ R+} et Y = {Yt, t ∈ R+} two
continuous processes. We ask if the limit exists

∫ t

0

Ysd
−Xs = lim

ε→0
ucp

∫ t

0

Ys
(Xs+ε −Xs)

ε
ds Forward integral∫ t

0

Ysd
+Xs = lim

ε→0
ucp

∫ t

0

Ys+ε
(Xs+ε −Xs)

ε
ds backward integral∫ t

0

Ysd
◦Xs = lim

ε→0
ucp

∫ t

0

(Ys+ε)
(Xs+ε −Xs)

2ε
ds symmetrical integral

[X,X] = lim
ε→0

ucp

∫ t

0

(Xs+ε −Xs)
2

ε
ds quadratic variation

In these for definitions, ucp means uniform convergence in
probability on compacts.

Reccall that a family (Xε)ε converges in probability to x,
uniformly on compacts if:

∀T > 0,∀δ > 0 : lim
ε→0

P

(
sup
t∈[0,T ]

|Xε
t −Xt| > δ

)
= 0

Indeed
We know that from hein lebesgue’s theorem that if f : I ⊂

R→ R a locally integrable function. So

lim
ε→0

1

2ε

∫ x+ε

x−ε
f(u)du = f(x), λ p.p

lim
ε→0

1

2ε

∫ x+ε

x

f(u)du = f(x), λ p.p

lim
ε→0

1

ε

∫ x+ε

x−ε
f(u)du = f(x), λ p.p

λ denotes the Lebesgue measure.
And according to the stochastic version of Fubini’s lemma,

if M is a martingale continuous square integrable and if H :
Ω×R+ ×R+ → R is a process bounded B(R+) measurable,
then, for all s, t ≥ 0, we have∫ s

0

(∫ t

0

H(u, v)dMu

)
dv =

∫ t

0

(∫ s

0

H(u, v)dv

)
dMu

By applying these two theorems we will have∫ t

0

H(s)dX(s) =

∫ t

0

[
lim
ε→0

1

ε

∫ s

s−ε
H(u)du

]
dX(s)

= lim
ε→0

1

ε

∫ t

0

(∫ s

s−ε
H(u)du

)
dX(s)

= lim
ε→0

∫ t

0

(∫ u+ε

u

dX(s)

)
H(u)du

= lim
ε→0

∫ t

0

X(u+ ε)−X(u)

ε
H(u)du

Let ε > 0 and t ≥ 0. If x and y are continuous stochastic
processes, we pose

I−(ε, t,X, dY ) =

∫ t

0

X(s)
Y (s+ ε)− Y (s)

ε
ds

and, if it exists
∫ t

0

Xd−Y the limit in probability, when ε

approaches 0. This last quantity is then called forward integral.
These integrals allow us to write Itô’s formula the

fractionnaire. Indeed when the processes x and y are semi-
martingales and y is adapted in this case the integral of forward
generalizes the stratonovich integral.

In [1] we prove the following result
∫ t

0

f ′(xs)d
−xs exists

for any function f ∈ C2(R,R) if and only if x admits a
quadratic tion and in this case the following Itô formula takes
place

f(xt) = f(x0) +

∫ t

0

f ′(xs)d
−xs +

1

2

∫ t

0

f”(xs)d[x, x]s t ∈ R (1)
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When X = BH .
We know that ifX = BH an mbf of indexH ∈ (0, 1). Then

BH admits a quadratic variation if and only if H ≥ 1
2 .

In this case it is worth the identity if H = 1
2 and is

identically zero if H > 1
2 . So (1) applies, for any function

f ∈ C2(R,R). Under the same assumptions, H ≥ 1
2 and

f ∈ C2(R,R), the symmetric integral
∫ t

0

f ′(xs)d
◦xs exists

and the formula Itô-Stratonovich takes places:

f(BHt ) = f(BH0 ) +

∫ t

0

f ′(BHs )d−BHs t ∈ R+ (2)

Because if H > 1
2 , [B

H , BH ] therefore disappears the

symmetric integral
∫ t

0

f ′(BHs )d◦BHs coincides with the

forward integral
∫ t

0

f ′(BHs )d−BHs

If H < 1
2 , it is not possible to directly show the existence of

the integral symmetrical. We can see that if H ≥ 1
4 fractional

brownian motion adputs 4-variations. So if H ≥ 1
4 and if

f ∈ C4(R,R) then
∫ t

0

f ′(BHs )d◦BHs exist and (2) takes

place. This result is the basis of the first demonstration.
Indeed the authors do not directly show the existence of

the integral of Stratonovich but introduce so-called order 3
integrals:

Let X = {Xt, t ∈ R+} and Y = {Yt, t ∈ R+} are two
continuous processes, we pose when the limit exists ,∫ t

0

Ysd
−(3)Xs = lim

ε→0
prob

∫ t

0

Ys
(Xs+ε −Xs)

3

ε
ds

∫ t

0

Ysd
◦(3)Xs = lim

ε→0
prob

∫ t

0

(Ys+ε+Ys)
(Xs+ε +Xs)

3

2ε
ds

They prove that, for locally bounded function f,∫ t

0

f(BHs )d−(3)BHs exist for H ≥ 1
4 .

More precisely, if H >
1

4
,

∫ t

0

f(BHs )d−(3)BHs exist and is

equal to 0 and if H = 1
4 , the integral

∫ t
0
f(B

1
4
s )d−(3)B

1
4
s exists

but is not worth 0 in general.
They finally deduce that the Itô-Stratonovich formula

f(BHt ) = f(BH0 ) +

∫ t

0

f ′(BHs )d◦BHs , t ∈ R+

takes place for any function f ∈ C4(R) if H ≥ 1
4 .

We know that now now that Itô’s formula exists if H > 1
2

and the formula of Itô-Stratonovich occurs if H > 1
4 [5].

A fundamental question arises to know for which values of
H the formula d’Itô and Stratonovich exist. The authors show
with the help of Ivan Nourdin that this set is ] 1

6 , 1[.
Indeed they first showed that the Itô-Stratonovich formula

cannot have place H < 1
2 . We have for s ≥ 0 et ε > 0 :

(BHs+ε)
3 = (BHs )3 + 3

(BHs+ε)
2 + (BHs )2

2
(BHs+ε −BHs )−

(BHs+ε −BHs )3

2

By integrating for s ∈ [0; t] and dividing by ε, we get:

1

ε

∫ t

0

[(BHs+ε)
3 − (BHs )3]ds =

1

ε

∫ t+ε

t

(BHs+ε)
3ds− 1

ε

∫ ε

0

(BHs )3ds

=
3

ε

∫ t

0

(BHs+ε)
2 + (BHs )2

2
(BHs+ε −BHs )ds− 1

2ε

∫ t

0

(BHs+ε −BHs )3ds

By doing ε→ 0, we deduce that the symmetric integral
∫ t

0

(BHs )2d◦BHs exist if and only if its cubic variation [BH , BH , BH ]

exists and in this case:

(BHt )3 = (BH0 )3 + 3

∫ t

0

(BHs )2d◦BHs −
[BH , BH , BH ]t

2
.

Therefore, for the Ito-Stratonovich formula to take place for the function f(x) = x3, it is nacessary that the symmetric integral∫ t

0

(BHs )2d◦BHs exist and therefore that the cubic variation [BH , BH , BH ] exists[9].

Indeed By setting f(x) = x3 we have

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)d
−Xs +

1

2

∫ t

0

f”(Xs)d[X,X]s

f(Xt) = f(X0) + 3

∫ t

0

X2d−Xs + 3

∫ t

0

Xd[X,X]s

f(BHt ) = f(BH0 ) + 3

∫ t

0

[BHs ]2d−BHs + 3

∫ t

0

BHs d[BHs , B
H
s ]s
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f(BHt ) = f(BH0 ) + 3

∫ t

0

[BHs ]2d−BHs −
[BHs , B

H
s , B

H
s ]

2

Now Nourdin with Gradinaru [8] showed that if m ≥ 3 an odd integer and suppose that H ∈ [0; 1
2 ] we have{

1√
ε

∫ t

0

(
BHs+ε −BHs

εH

)m
ds : t ≥ 0

}
→(loi)

{√
cm,Hβt : t ≥ 0

}
, ε→ 0.

Here {βt : t ≥ 0} denotes a standart Brownian motion from 0 and the positive constant

cm,H = 2

m∑
k=1

a2
k,n

k!

∫ ∞
0

[
(x+ 1)2H + |x− 1|2H − 2x2H

]k
We therefore deduce that the cubic variation [BH , BH , BH ] does not exist for H < 1

6 .

Indeed, suppose that
1

ε

∫ t

0

(BHu+ε −BHu )3du of converges in probability, when ε→ 0, to a random variable z, we deduce that

ε
1
2−3H 1

ε

∫ t

0

(BHu+ε −BHu )3du→loi 0 of ε→ 0

But this quantity is also equal to
1√
ε

∫ t

0

(
BHu+ε −BHu

εH

)3

du, and converges law, from the above to
√
c3,HtN . We get a

contradiction.
Therefore, the Ito Stratonovich formula cannot take place if H < 1

6 .
What happens for H > 1

6

Nourdin, Gradinaru, Russo and Vallois [2] have shown that the symmetrical integral order 3 that
∫ t

0

f(BHs )d◦(3)BHs exists

for any function sufficiently regular if H > 1
6 and that in this case, it is zero.

Nourdin also showed that the symmetric integral of order 5
∫ t

0

f(BHs )d◦(5)BHs exists for any sufficienty regular function if

H > 1
10 and that in this case, she is bad.

Using Taylor’s formula for f ∈ C6(R,R):

f(b) = f(a) +
f ′(b) + f ′(a)

2
(b− a)− f3(b) + f3(a)

12
(b− a)3 +

f5(b) + f5(a)

120
(b− a)5 + ◦((b− a)6) a, b ∈ R

by setting a = BHs , b = BHs+ε, by integrating for s ∈ [0, t] by dividing by ε and by making ε→ 0 that, if H > 1
6

f(BHt ) = f(0) +

∫ t

0

f ′(BHs )d◦BHs −
1

12

∫ t

0

f (3)(BHs )d◦(3)BHs +
1

120

∫ t

0

f (5)(BHs )d◦(5)BHs

Since the symmetric integrals of order 3 and 5 are zero, the proceding formula dente is in fact reduced to the Stratonovich
integral.

Consequently, Ito Stratonovich formula holds for any function f suffisufficiently regular (precisely class C6) if H > 1
2 .

If H < 1
6 then the 3-variations does not exist so we have to define a new class of integrals.

Let x be a continuous process. An integer m ≥ 1 is a measure of probability µ on [0,1] have defined µ integral of order m of
f(x) by : ∫ t

0

f(Xu)dµ,mXu = lim
ε→0

prob
1

ε

∫ t

0

du(Xu+ε −Xu)m×
∫ 1

0

f(Xu + α(Xu+ε −Xu))µdα

Let n and be two strictly positive integers. Suppose µ is a measure of symmetric probability on [0,1] such that

m2j =

∫ 1

0

α2jd(α) =
1

2j + 1
pour j = 1,· · · l-1

If f ∈ C2n(R) and if x is a continuous process admitting one (2n)-variations, provided that all the integrals in play exist, we
have the Ito formula

f(Xt) = f(X0) +

∫ t

0

f ′(Xu)dµ,1Xu +

n−1∑
j=l

Ku
l,j

∫ t

0

f2j+1Xud
δ1/2,2j+1
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Or the sum is zero by convention if l > n − 1 here the Kµ
(l,j) are constants universal. Let us now explore the existence and

non-existence of
∫ t

0

g(Xu)dµ,mXu

IfX = BH an mbf of Hurst indexH ∈ (0, 1) and µ a probability measure on [0,1]. We denote by µ2n the moment of order 2n
of the centered normal law and reduced. The following theorem gives the complete description of the different cases possibles.

2.2. Theorem 1

Let m ≥ 2 be an integer and µ be a probability measure on [0,1]
1) Suppose that m = 2n is even and g is a locally bounded function. So:

a) If 2nH > 1 then
∫ t

0

g(BHu )dµ,2nBH
u exist and∫ t

0

g(BHu )dα,2nBH
u =

∫ t

0

g(BHu )d[BH](2n)
u = µ2n{ ∫ t

0
g(BHu )du if2nH = 1

0 if 2nH > 1;

b) If 2nH < 1 then
∫ t

0

g(BHu )dµ,2nBH
u en general does not exist.

2) Suppose that m =2n+1 is odd, that g is a function of class C2n+1 and that µ is symmetric . So:

a) If (2n+ 1)H > 1
2 so

∫ t

0

g(BHu )dµ,2n+1BH
u exists and is canceled.

b) If (2n+ 1)H < 1
2 so

∫ t

0

g(BHu )dµ,2n+1BH
u in general does not exist. For Proof see [11]

3. Using the Integral and the Fractional Derivative

3.1. Recall

Riemann-Liouville fractional integrals on R are defined by

Iα+ =
1

Γα

∫ x

−∞
f(x)(x− t)α−1dt

Iα+ =
1

Γα

∫ ∞
x

f(x)(x− t)α−1dt

Let H ∈ (0, 1
2 ) ∪ ( 1

2 , 1) and α = H − 1
2 , forall t ∈ R we have the equality

Iα−1(0,t)(s) =
1

Γ

∫ ∞
x

1(0,t)(u)(u− x)α−1

Indeed if H ∈ ( 1
2 , 1)

Iα−1(0,t)(x) =
1

Γ(α)

∫ t

0

(u− x)α−1du =
1

Γ(α+ 1)
[(t− x)α − (−x)α]

Using the antiderivative of (u− x)α−1

In the same way have

Iα+1a,b(s) =
1

Γ(α+ 1)
((b− x)+α− (a− x)α+)

Let f ∈ L1(R). The Fourier transform of f defined as.

(Ff)(s) = f̂(x) =

∫
R
eixtf(t)dt

[2].
We say that f is a step-by-step function, or an elementary

function, if there exists a finite number of points tk ∈ R, 0 ≤
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k ≤ n− 1, and ak ∈ R, such that

f(t) =

∞∑
k=1

ak1[tk−1,tk[(t)

For H ∈ (0, 1) we introduce the set

FH = {f ∈ L2(R), f : R→ R,
∫
R
| f̂(x) |2 |x|−2αdx}

Let f ∈ FH . Then there exists a sequence of functions fn
such that

‖f − fn‖Fn → 0, n→∞

Indeed if f ∈ L2(R+), there exists a sequence fn of
staircase functions which converges in L2(R+), to f that is to
say ∫ ∞

0

| fn − f |2 dx→ 0 if n→∞

In this case, the sequence fn from Cauchy in L2(R+)

3.2. Theorem 2

For H ∈ (0, 1), the set FH is a product linear space noted:

(f, g)FH
=

∫
R
f̂(x)ĝ(x)|x|−2αdx, α = H − 1

2

Moreover all basic functions belong to FH . Proof Indeed if
a and b are finite we have∫

R
|1̂a,b(x)|2|x|−2αdx =

∫
R
|eixb − eixa|2|x|−2−2αdx

is equivalent to the convergent
∫
|x|−2α−2dx in the

neighborhood of ±∞ and is equivalent to the convergent∫
|x|−2−2αdx in the neighborhood of 0.

We deduce that the step function belongs to FH
To obtain the representation of mbf in terms of an indicator

functions, you can use fractional integrals and fractional
derivatives first for H ∈ ( 1

2 , 1), we can use fractional integrals
and for H ∈ (0, 1

2 ) we use fractional derivates [3].
Indeed the stochastic integral with respect to the mbf

has been defined as principalment for deterministic or linear
integrals.

In the general case and particularty it is more complicated
to establish such an integral, since the regularity of the
trajectories of mbf varies with the Hurst parameter. In the
general case and particularty when H > 1

2 , the trajectories
of the mbf are essentially α-Hölder continuous for α < H ,
therefore, a trajectory stochastic integral approach is also
effective in the same way as the presented by Young.

In the general case, when H < 1
2 , the trajectories of the

mbf become more rupigs and therefore the trajectory approa

ch for the stochastic integral is not consistent and therefore
unnecessary. For this reason other definitions of in stochastic
tegrals were introduced. Most notable is the integration of the
divergent type (or the integral of Skorohod) which is based on
the idea of calculus by Malliavin [13].

We define the operator MH
± f = C

(3)
H Iα±f , H ∈ ( 1

2 , 1)

and MH
± f = f , if H = 1

2 and MH
± = C3

HD
−(H− 1

2 )
± f if

H ∈ (0, 1
2 ) where C

(3)
H = C

(2)
H Γ(H + 1

2 )

So we can deduce BHt =

∫
R

(MH
− )1(0,t)(s)dws is a

browmovement mine fractional normalized.
Indeed:

BHt =

∫
R
MH
− 10,t(s)dws

BHt =

∫
R
C

(3)
H Iα±10,t(s)dws

= C
(3)
H

∫ t

0

KH(t, u)dws

3.3. Definition 1

We now return to an arbitrary full space (Ω,F , P ).
We denote by ε the space of stepped functions. We can

define the Wiener integral staged with respect to fractional
Brownian motions as follow: for a mbf (BHt )t≤0 one defines
the integral of Wiener compared to the mbf for f ∈ ε by:

IH =

∫
T

f(u)dBHu =

n∑
k=1

fk(BHuk+1
−BHuk

), T = [0, t]

and f(u) =
∑n
k=1 fk1[uk,uk+1], u ∈ [0, t]

We extend the application IH in a space of integrants which
is a space provided wich a scalar product, this space is denoted
LH2 Consider the space LH2 (R) =

〈
f : MH

− f ∈ L2(R)
〉

provided wich the standard

‖f‖LH
2 (R) = ‖MH

− f‖L2(R)

3.4. Definition 2

The Wiener integral with respect to mbf is the isometric map
IH definished as:

IH : LH2 → SP (BH)

f → IH(f) = X

So we can define

Sp(B
H) =

{
X, IH(fn)→ X, fn(x) ⊂ ε

}
we associate x with a sequence of stepped functions
(fn(x))n∈N , equivalent

IH(fn)→ X . In addition we can write
∫
T

fx(t)dBHt , where

fx is an element of equivalence classes.
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For H > 1
2

To make sense of a IH(f) =

∫
R
f(s)dBHs we construct

interest classes integrating of deterministic functions.
First for f ∈ ε where ε is the set of staircase functions on R.
In a naturel way we have

IH(f) =

∫
R
f(s)dBHs =

n∑
k=1

ak(BHtK −B
H
tK−1

)

The we extend this definition to a class of integrant larger
than ε. For that we consider the representation of mbf on R
given by:

BHt =

∫
R
MH
− 1(0,1)dws thus for all functions f and g ∈ ε

we have ∫
R
f(s)dBHs =

∫
R
(MH
− f)(s)dws

And using the well-know isometric property of the Wiener
integral of the standard Brownian motion we write

E

(∫
R
f(s)dBHs

∫
R
g(s)dBHs

)
= E

(∫
R

(MH
− f)(s)dws

∫
R

(MH
− g)(s)dws

)
=

∫
R

(MH
− f)(s)(MH

− g)(s)ds

We put LH2 =

{
f,

∫
R

(MH
− f)2(s)ds <∞

}
A Gaussian space is a closed vector subspace of L2(Ω)

composed of one-dimensional centered Gaussian random
variables.

Let BHt a centered one-dimensional Gaussian process.

Then, vect(BHti , t ∈ [0, T ])
L2(Ω)

is the Gaussian space
generated by the w process.

Let Sp(BH) = vect(BHti , t ∈ [0, T ])
L2(Ω)

the space created
by the closure in L2(Ω) of all linear combinations of mbf
increments on T. Since Sp(BH) is a complete linear space then
the class of interest grant must be isometric to the consequently
complete Gaussian space. Gold for H ∈] 1

2 , 1[ the integrant
classLH2 is not complete but we can find isometric eigenspaces

vect(BHti , t ∈ [0, T ])
L2(Ω)

to LH2 .

3.5. Theorem 3

Space LH2 is not complete for H ∈ ( 1
2 , 1)

Proof The operator MH
− : LH2 (R) → L2(R) is isometric.

Thus, LH2 can be identified relied on its image in L2(R). From
the fact that for H ∈ ( 1

2 , 1).
Operator MH

− coincides with
D(I−α− ) = D

(
Dα
− = Up≥1I

α
−(Lp(R)

)
)

Therefore quent, the image in MH
− (LH2 (R)) is dense and

is not complete. Despite the fact the LH2 is not complete for
H ∈ ( 1

2 , 1), due to the theorem following one can extend the
map IH on ε to the functions of LH2 , provided with scalar
product therefore

〈f, g〉L2(R) =

∫
R

(MH
− f)(s)(MH

− g)(s)ds

3.6. Theorem 4

For 0 < H < 1, the set of linear operators generated by{
MH
− 1(u, v), u, v ∈ R

}
is dense in L2(R).

Proof i) LetH ∈ ( 1
2 , 1) (forH = 1

2 the assertion is evident).
Since (b + x)−α − x−α ∼ cx−

1
2−H as x → ∞, we have that

the function (b− x)−α+ − (−x)−α+ ∈ L 1
H

(R).

Therefore 1(a,b) = Mα
−g ∈ Iα−(L 1

H
(R)), and this is true

also for step function. Since the class of step functions is dense
in L 1

H
(R), it follow that Iα−(L 1

H
(R)) is dense in L2(R).

Let h ∈ Iα−(L 1
H

(R)), h = MH
− g, g ∈ L 1

H
(R). Then there

exists the sequence of step functions gn → g ∈ L 1
H

(R). From
the Hardy Littlewood theorem it follow that

‖MH
− gn − h‖L2(R) ≤ c‖gn − g‖L 1

H
(R) → 0, n→∞

So, the linear span of {MH
− 1(u,v), u, v ∈ R} is dense in

Iα−(L 1
H

(R)), and therefore it is dense in L2(R).

(ii) Let H ∈ (0, 1
2 ). Due to the Parceval identity, it

is sufficient to prove that the linear span of the function
̂MH
− 1(a,b) is dense in L2(R).
Since the set of functions stepped ε is dense in LH2 can

extend the application

IH(f) : ε→ Sp(BH)

Since the extention IH(f) is linear and preserves the dot
product, we can say that LH2 is isometric to a subspace of
Sp(BH). We can therefore approximate mer any functions f
of LH2 by a stepped function fn so MH

− fn →MH
− f so

lim
n→∞

∫
R
fn(s)dBHs = lim

n→∞

∫
R
MH
− fn(s)dws

=

∫
R
MH
− f(s)dws

=

∫
R
f(s)dBHs

= IH(f)

where convergence takes place in L2(Ω).

On the other handE|IH(f)|2 =

∫
R
|MH
− f(s)|2ds for f ∈

LH2 .
For H < 1

2
We always consider first the function f : R → R defined

by:
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f(t) =

n∑
k=1

ak1[tk−1,tk](t) ak ∈ R and tk−1 < tk, k = 1, . . . , n

In a natural way we have

IH(f) =

∫
R
f(s)dBHs =

n∑
k=1

ak(Btk −Btk−1
)

Then we extend this definition to a class of integrant larger than ε. For that we consider the representation of mbf on R given
by:

BHt =

∫
R
MH
− 1(0,t)(s)dws. Thus for all functions f and g ∈ ε we have

∫
R
f(s)dBHs =

∫
R
(MH
− )f(s)dws

and using the well-know isometric property of the Wiener integral of the standard Brownian motion we write

E

(∫
R
f(s)dBHs

∫
R
g(s)dBHs

)
=

∫
R

(
MH
− f
)

(s)
(
MH
− g
)

(s)ds

We put LH2 (R) =

{
f,

∫
R

(
MH
− f
)2

(s)ds <∞
}

with
(
MH
− f
)

=
(
C

(3)
H D

1
2−H
− f

)
For H< 1

2 space LH2 (R) coincides with space Λ =
{
f, ∃φf ∈ L2(R), f = I−α− φf

}
for H∈ (0, 1

2 ). The set of staircase
functions ε is dense in space linear LH2 (R) = Λ with the dot product

〈f, g〉LH
2

(R) =

∫
R
(MH
− f)(s)(MH

− g)(s)ds =
(
C3
H

)2 ∫
R

(D
1
2−H
− f)(s)(D

1
2−H
− g)(s)ds

3.7. Theorem 5

For H < 1
2 , provided with the scalar product the space Λ is a complete space. Proof Let {fn}n≥1 a Cauchy sequence in Λ

then there exists a sequence φfn which is Cauchy in L2(R) such that φfn → φ.
If f(u) = (I−α− φ)(u) then fn → f in Λ since φ(fn) → φ in LH2 (R) is complete and is equal to the closure of the space of

staircase functions ε under the standard ‖MH
− ‖L2(R). By the isometric relation

‖ IH(f) ‖L2(R)=
∑

i=1,k=1

aiak

∫
R
MH
− 1[tk−1,tk](x)MH

− 1[tk−1,tk](x)dx

Where there is a unique extension of the Wiener fractional
integral for staircase functions to spaces LH2 (R) = ∧.

Thus for any function f ∈ LH2 (R) there exists a staircase
function fn such that we define the Wiener integral by

IH(f) =

∫
R
f(s)dBHs = lim

n→∞

∫
R
fn(s)dBHs in L2(R)

4. Conclusion

In this exposed, the work which was to give meaning, to the
integral of determined functions nists (called Wieners integral)
with respect to fractional Brownian motion is ahieved in a part
by constructing classes of integrants for these deterministic
functions which allows us to define the integral [16].

The construction of these classes to make an integration
was necessary since the movement fractional Brownian event
is a general case of standard brownian motion. This while it

should be noted that fractional brownian motion loses certain
properties such as semimartingality, the property of markovs
which allowed the construction of a integral with respect to
standart brownian motion. It is not also quadratic finished,
il was then necessary to develop a new stochastic calculus
and therefore new methods whose applications can be found
in such varies fiels as image ment, banking and insurance in
finance, modeling in physics, telecommunication ... .

The representation of fractional brownian motion over R
and over an inteval [0,T] thanks to the elements of fractional
calculus allowed us to construct classes of interest grants for
H > 1

2 and classes of integrants for H < 1
2 in the case where

H > 1
2 the space is not complete, we were able to buld clean

subspace to make integration [1].
In the literature, there is only one other construction (as far

as we know) of integral against fractional brownian motion
allowing to treat, as here, the case of all Hurst indices H ∈
(0, 1).This is in fact a very difficult problem, which has only
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recently been solved.
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