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Abstract: The generalized absolute value matrix equation has application in a variety of optimization problems, its 

unique solvability is still on the way. In this note, the unique solvability of the generalized absolute value matrix equation is 

considered. A new unique solvability of generalized absolute value matrix equation is given. The obtained result can be regarded 

as an extension of the absolute value equation to the generalized absolute value matrix equation. As an application, new 

convergence of matrix multisplitting Picard-iterative method is presented. 
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1. Introduction 

In this note, the following generalized absolute value 

matrix equation (GAVME) is considered 

�� + �|�| = �,	               (1) 

where �, �, � ∈ ��×�  are given matrices and � ∈ ��×�  is 

an unknown matrix, |�|	 denotes the component-wise 

absolute value of the matrix 	� , i.e., 	|�| = 
������ . The 

GAVME (1) is a generalization of the generalized absolute 

value equation (GAVE) 

�� + �|�| = �,	                (2) 

where �, � ∈ ��×�  are given matrices, � ∈ ��  is given 

vector and x ∈ �� is an unknown vector. The GAVE (2) was 

introduced by Rohn [1] and investigated in a more general 

context [2-4]. The GAVME (1) is also a generalization of the 

absolute value equation (AVE) 

�� + |�| = �.	                 (3) 

The nonlinear and non-differentiable term �|�|  in (1) 

often leads to more challenges of the unique solvability and 

numerical methods for (1) compared with matrix equations, 

there are many results of solvability and numerical methods 

for some kinds of matrix equations, see for example [5-8] and 

references cited therein. 

The GAVE (2) and AVE (3) have recently attracted the 

attention of many scholars because their applications in a 

variety of optimization problems, e.g., linear complementarity 

problem, linear programming or convex quadratic 

programming problems; see for example [1-4, 9]. The 

conditions of the unique solvability of GAVE (2) and AVE (3) 

have been given in references [1, 3, 10-13], and the numerical 

methods for solving GAVE (2) and AVE (3) can be found in 

the literatures [12-21]. Rohn [22] has reported the condition 

for (2) for having unique solution. Let �����∙� and �����∙� 
denote the largest and smallest singular value of a given 

matrix respectively, it is proved in Theorem 2 of [22] that if �����|�|� < �������, then for each	� ∈ ��, the equation (2) 

has a unique solution. Authors of [11] were able to reduce the 

conditions for having unique solution for (2) and sowed that 

the solution is unique under the condition 

������� < �������. 
Compared with the GAVE (2) and AVE (3), the GAVME (1) 

is rarely studied. It is understood that only Dehghan and 

Shirilord [23] have provided the condition of unique 

solvability for the GAVME (1) and proposed the matrix 

multisplitting Picard-iterative method for solving (1) recently. 

Dehghan and Shirilor [23] have shown that the condition for 

having uniqueness solution of (1) is the same as that for (2), 

which is reported by Rohn [22]. In this note, it will be pointed 

out that the unique solvability of the GAVME (1) in [23] may 
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be invalid to judge the unique solution of GAVME in some 

case, and give a new unique solvability for the GAVME (1), 

which is weaker than that in [23], and is same as that for 

GAVE (2) in [11]. The new unique solvability for the GAVME 

(1) obtained in this note can be regarded as an extension of the 

GAVE (2) (see [11]) to the GAVME (1). As an application of 

new result, the convergence of matrix multisplitting 

Picard-iterative method for solving (1) is restated. 

2. Main Result 

In this section, main result on the unique solvability of the 

GAVME (1) will be given. First of all, recall the result about 

the unique solvability of the GAVME (1) provided in [23] 

reads 

Lemma 1 ([23] Theorem 2.1) Let �, � ∈ ��×� satisfy 

�����|�|� < �������,               (4) 

then the GAVME (1) has a unique solution for any matrix � ∈ ��×�. 

It should be remarked that the condition (4) in Lemma 1 

may be invalid to judge the unique solution of GAVME in 

some cases, consider the following simple example. 

Example 1 Consider the GAVME 

�2.5 00 2.5#$%%&%%'
(

��)) �)*�*) �**#$%%&%%'
+

+ �−2 1−1 −1#$%%&%%'
.

/|�))| |�)*||�*)| |�**|0$%%%&%%%'
|+|

=
�0.5 1−1 1.5#$%%&%%'

1
.                 (5) 

It is easy to see that ������� = 2.5  and �����|�|� =2.6180, so �����|�|� < ������� does not hold. However, 

the GAVME (5) is uniquely solvable. In fact, the unique 

solution of (5) is � = �1 00 1#. 
To give main result, the following result is needed. 

Lemma 2 ([11] Theorem 2.1) Let �,� ∈ ��×� satisfy 

σ567��� < σ58����,              (6) 

then the GAVE (2) has a unique solution for any � ∈ ��. 

Theorem 1 Let �, � ∈ ��×� satisfy 

������� < �������, 
then the GAVME (1) has a unique solution for any matrix � ∈ ��×�. 

Proof. Let �  and �  be partitioned as � = ��), ⋯ , ��� 
and � = ��), ⋯ , ���, where ��  and �� 	are the :-th column 

of matrices �  and � , respectively. The fact of |�| =�|�)|, ⋯ , |��|� implies that the GAVME (1) can be rewritten 

as 	���), ⋯ , ��� + ��|�)|, ⋯ , |��|� = ��), ⋯ , ���,  

or equivalently, 

��� + ����� = �� , : = 1,2,⋯ , ;.         (7) 

It follows from Lemma 2 (or Theorem 2.1 of [11]) that the 

GAVE (7) has a unique solution for any : ∈ <1,2,⋯ , ;= 

when ������� < ������� . As a result, the unknown 

matrix	� = ��), ⋯ , ��� can be unique identified by solving 

(7), that is to say the GAVME (1) has a unique solution for 

any matrix � ∈ ��×�. The proof is completed. 

Remark 1 As for � ∈ ��×�, ������� ≤ �����|�|�	holds 

(see Remark 2.1 of [11]), so the condition ������� <������� is more weaker than	�����|�|� < �������. 
Remark 2 Consider Example 1 again, it can be seen that ������� = 2.3028  and ������� < �������  holds, so it 

follows from Theorem 1 that the GAVME (5) has the unique 

solution. This shows that Theorem 1 is valid in judging the 

unique solvability of the GAVME (1) while Theorem 2.1 in 

[23] is invalid. 

In particular, when � = @, an n-order identity matrix, the 

GAVME (1) becomes the absolute value matrix equation 

(AVME) 

�� + |�| = �                (8) 

From Theorem 1, the following unique solvability of the 

AVME (8) can be derived directly. 

Corollary 1 If the singular values of � ∈ ��×�	outstrip 1, 

then the AVME (8) has a unique solution for any matrix � ∈ ��×�. 

Remark 3 Corollary 1 can be regarded as extending the 

unique solvability of the AVE (3) (see Proposition 3 (i) in [3]) 

to the AVME (8), and Theorem 1 extends the unique 

solvability of Lemma 2 from the GAVE (2) to the GAVME 

(1). 

3. An Application 

In this section, as an application of result in the previous 

section, the convergence of matrix multisplitting 

Picard-iterative method [23] for solving (1) will be restated. 

Let � = B� − C� ,  : = 1,2,⋯D,  be different splittings for 

matrix 	� , then the matrix multisplitting Picard-iterative 

method is defined as [23]: 

Method 1 Suppose that ��E� ∈ ��×� is an initial guess for 

solution of the GAVME (1), and � = B� − C� , : = 1,2,⋯D, 

are different splittings for matrix	�, compute ��F� ∈ ��×� 

using the following iteration: 

1. For G = 0,1,2,⋯, 
2. Set ��F,E� = ��F�, 
3. For H = 0,1,⋯ , HF − 1, 
4. Solve the following equations by an iterative method to 

obtain ��F,IJ)�, 

KL
M
LN B)��F,IJ) O⁄ � = C)��F,I� − ����F�� + �,
B*��F,IJ* O⁄ � = C*��F,IJ) O⁄ � − ����F�� + �,⋮BO��F,IJ)� = CO��F,IJ)R) O⁄ � − ����F�� + �,G = 0,1,⋯ , H = 0,1,⋯ , HF − 1,

 

5. Set S�TJU� = S�V,	VT� 
In concise form, Method 1 can be rewritten as 
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��FJ)� = WOIX(��F� + �R)(B|��F�|−C))+�R) (C−�|�(F)|), 
where WO = Y�Z)

O B�
R)C�. On the convergence of Method 1, 

the following result is obtained. 

Theorem 2 Let �, � ∈ ��×�  satisfy ;����(�) <
����(�). Suppose that �(E) ∈ ��×� is a preliminary guess 

for solution of the GAVME (1), and �(∗) is its exact solution, 

{�(F)}FZE\  is generated by Method 1. If ]WO]^ < 1, then 

]�(FJ)) − �(∗)]
^	

 

≤ (]WO]^
_
(1 + ‖�R)‖^‖�‖^)

+ ‖�R)‖^‖�‖^)FJ)]�(E) − �(∗)]^ 

holds, where a = bc;F{HF}. In particular, if 

a >
efgh1 − ‖�R)‖^‖�‖^i − efgh1 + ‖�R)‖^‖�‖^i

efg(]WO]^)
 

then the sequence j�(F)k
FZE

\
 converges to the unique 

solution �(∗). 
Remark 4 The difference between Theorem 3.2 of [23] and 

Theorem 2 is that ;����(|�|) < ����(�) is replaced by 

;����(�) < ����(�). In fact, when ; > 1, there is  

����(�) < √;����(�) < ;����(�). 
Therefore, on the one hand, ;����(�) < ����(�) implies 

����(�) < ����(�), it follows from Theorem 1 that the 

GAVME (1) has the unique solution for any matrix 

� ∈ ��×�, on the other hand, it is easy to see that 

‖�R)‖^‖�‖^ ≤ ;
����(�)
����(�)

< 1 

When ;����(�) < ����(�) , so 1 − ‖�R)‖^‖�‖^ > 0 

and the conclusion of Theorem 2 holds, see [23]. 

Remark 5 When D = 1, Method 1 reduces to Algorithm 1 

of [23], hence, the convergence of this case from Theorem 2 

can be given directly. The difference is that the condition in 

Theorem 2.3 of [23] is replaced by ����(�) < ����(�). 
Remark 6 It should also be remarked that the condition 

;����(�) < ����(�) given in Theorem 2 is weaker than 

;����(|�|) < ����(�)  in Theorem 3.2 of [23] as 

����(�) ≤ ����(|�|) (see Remark 2.1 of [11]). 

4. Conclusions 

In this paper, the unique solvability of generalized absolute 

value matrix equation is discussed. A weaker condition for 

the unique solvability for the GAVME (1) is given. In 

addition, as an application of the obtained result, the 

convergence of matrix multisplitting Picard-iterative method 

is also restated. 
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