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Abstract: Hypergraph is an important model for complex networks. A hypergraph can be regarded as a virtual simplicial
complex with some faces missing and it is the key hub to connect the simplicial complex in topology and graph in
combinatorics. The embedded homology groups of hypergraphs are new developments in mathematics in recent years, and the
embedded homology groups of hypergraphs can reflect the topological and geometric characteristics of complex network which
can not be reflected by the associated simplicial complex of hypergraphs. Künneth formulas describe the homology or
cohomology of a product space in terms of the homology or cohomology of the factors. In this paper, we prove that the infimum
chain complex of tensor products of free R-modules generated by hypergraphs is isomorphic to the tensor product of their
respective infimum chain complexes, and give an analogues of Künneth formula for hypergraphs by classical algebraic Künneth
formula based on the embedded homology groups of hypergraphs, which provides a theoretical basis for further study of
cohomology theory of hypergraphs. In fact, the Künneth formula here can be extended to the Künneth formula of embedded
homology of graded abelian groups of chain complexes, which can be used to extend the Künneth formula for digraphs with
coefficients in a field.
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1. Introduction
In topology, a hypergraph can be obtained from a simplicial

complex by deleting some non-maximal simplices [2, 13].
Hypergraph is a standard mathematical network-model for
many real-world data problems. For example, the coauthorship
network of scientific researchers and their collaborations [12],
the biological cellular networks [11], and the network of
biomolecules and biomolecular interactions [14]. Hypergraph
is the key hub to connect the simplicial complex in topology
and graph in combinatorics, which is worth studying in theory
and application [1, 2, 13].

Let VH be a totally-ordered finite set. Let 2V denote the
powerset of V . Let ∅ denote the empty set. A hypergraph is
a pair (VH,H) where H is a subset of 2V \ {∅} [1, 13]. An
element of VH is called a vertex and an element ofH is called a
hyperedge. A hyperedge σ ∈ H consisting of k + 1 vertices is
called a k-dimensional hyperedge (k ≥ 0), denoted as σ(p) or
σ for short. Throughout this paper, we assume that each vertex
in VH appears in at least one hyperedge inH. Hence VH is the

union
⋃
σ∈H σ, and we simply denote a hypergraph (VH,H)

asH.
Let H be a hypergraph. The associated simplicial complex

KH of H is defined as the smallest simplicial complex that H
can be embedded in [13]. Precisely, the set of all simplices of
KH consists of all the non-empty subsets τ ⊆ σ, for all σ ∈ H.

There are various (co)homology theories of hypergraphs.
For example, A.D. Parks and S.L. Lipscomb studied the
homology of the associated simplicial complex in 1991
[13]. F.R.K. Chung and R.L. Graham constructed certain
cohomology for hypergraphs in a combinatorial way in 1992
[3]. E. Emtander constructed the independence simplicial
complexes for hypergraphs and studied the homology of these
simplicial complexes [4], and J. Johnson applied the topology
of hypergraphs to study hyper-networks of complex systems
in 2009 [8]. S. Bressan, J. Li, S. Ren and J. Wu defined the
embedded homology of hypergraphs as well as the persistent
embedded homology of sequences of hypergraphs in 2019 [2].

Let R be a principal ideal domain. Let H be a
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hypergraph. Let R(H)n be the finitely generated free R-
module with generators of n-dimensional hyperedges in H.
Let K be a simplicial complex such that H ⊆ K. The
infimum chain complex and the supremum chain complex
ofH are defined as

Infn(R(H)∗) = R(Hn) ∩ (∂n)−1R(H)n−1, n ≥ 0 (1)

and

Supn(R(H)∗) = R(Hn) ∩ ∂n+1R(H)n+1, n ≥ 0 (2)

respectively, where ∂∗ is the boundary maps of K and ∂−1∗
denotes the pre-image of ∂∗ [2]. It is proved that both
Infn(R(H)∗) and Supn(R(H)∗) do not depend on the choice
of the simplicial complex K that H embedded in. Therefore,
K can be taken as the associated simplicial complex of H.
The homologies of these two chain complexes (1) and (2)
are isomorphic [2, Proposition 2.4], which are defined as
the embedded homology of H and denoted as Hn(Inf∗(H))
or simply Hn(H). In particular, if the hypergraph is a
simplicial complex, then the embedded homology coincides

with the usual homology. Moreover, each morphism of
hypergraphs from H to H′ induces an homomorphism
between the embedded homology Hn(H;R) and Hn(H′;R)
[2, Proposition 3.7].

Künneth formulas describe the homology or cohomology
of a product space in terms of the homology or cohomology
of the factors. Hatcher gave the classical algebraic Künneth
formula [7]. A. Grigor’yan, Y. Lin, Y. Muranov and S.T. Yau
studied the the Künneth formula for the path homology (with
field coefficients) of digraphs [5, 6].

In this paper, we give a Künneth formula for the Embedded
Homology in Theorem 4.2.

2. Preliminaries
In this section, we define the tensor product for graded

abelian subgroups of chain complexes.
Firstly, we review the definition for the tensor product of

chain complexes. The content of this subsection can be found
in [7, Chapter 3, Section 3.B].

Let C and C ′ be chain complexes

C = {Cn, ∂n}n≥0, C ′ = {C ′n, ∂′n}n≥0.

Their tensor product is a chain complex

C ⊗ C ′ =
{ ⊕

p+q=n,
p,q≥0

Cp ⊗ C ′q,
⊕

p+q=n,
p,q≥0

∂p ⊗ ∂′q
}
n≥0

. (3)

In (3), the tensor product of boundary maps is given by

(∂p ⊗ ∂′q)(up ⊗ vq) = (∂pup)⊗ vq + (−1)pup ⊗ (∂′qvq)

for any up ∈ Cp and any vq ∈ C ′q . For simplicity, we denote

(C ⊗ C ′)n =
⊕

p+q=n,
p,q≥0

Cp ⊗ C ′q, (∂ ⊗ ∂′)n =
⊕

p+q=n,
p,q≥0

∂p ⊗ ∂′q.

Then for any up ∈ Cp and any vq ∈ C ′q ,

(∂ ⊗ ∂′)n
( ∑

p+q=n,
p,q≥0

up ⊗ vq
)

=
∑

p+q=n,
p,q≥0

(∂pup)⊗ vq + (−1)pup ⊗ (∂′qvq). (4)

It follows from (4) that

(∂ ⊗ ∂′)n : (C ⊗ C ′)n −→ (C ⊗ C ′)n−1

is well-defined, and for any n ≥ 0,

(∂ ⊗ ∂′)n ◦ (∂ ⊗ ∂′)n+1 = 0.

Hence (3) is a chain complex.
Secondly, we generalize the tensor product of chain complexes and define the tensor product for graded abelian subgroups of

chain complexes.
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For each n ≥ 0, we consider abelian subgroupsDn ⊆ Cn andD′n ⊆ C ′n. Then we have graded abelian subgroups of the chain
complexes

D = {Dn}n≥0, D′ = {D′n}n≥0.

The tensor product of D and D′ is defined as

D ⊗D′ =
{ ⊕

p+q=n,
p,q≥0

Dp ⊗D′q
}
.

It is direct to verify that D ⊗D′ is a graded abelian subgroup of the chain complex C ⊗ C ′. For simplicity, we denote

(D ⊗D′)n =
⊕

p+q=n,
p,q≥0

Dp ⊗D′q.

Lemma 2.1. For any n ≥ 0,

(∂ ⊗ ∂′)n(D ⊗D′)n =
∑

p+q=n,
p,q≥0

∂pDp ⊗D′q +Dp ⊗ ∂′qD′q.

Proof. By (4), the lemma follows from a calculation

(∂ ⊗ ∂′)n(D ⊗D′)n = (∂ ⊗ ∂′)n
( ⊕

p+q=n,
p,q≥0

Dp ⊗D′
q

)
=

∑
p+q=n,
p,q≥0

(∂ ⊗ ∂′)n(Dp ⊗D′
q)

=
∑

p+q=n,
p,q≥0

∂pDp ⊗D′
q +Dp ⊗ ∂′

qD
′
q.

3. Auxiliary Results for Theorem 4.2

The finitely generated free R-module generated by all hyperedges of a hypergraph is a graded abelian group of the chain
complex of its associated complex [9, 10], where R is a principal ideal domain. In this section, we will give an important
auxiliary result of the main theorem in Proposition 3.1 and illustrate it with examples.

Lemma 3.1. LetH andH′ be two hypergraphs. Then each element in Infn(R(H)⊗R(H′)) (n ≥ 0) can be written in the form

m∑
i=1

xi ⊗ yi, deg(xi) = pi, deg(yi) = qi, pi + qi = n

where xi, yi are linear combinations of hyperedges ofH andH′ respectively such that for each 1 ≤ i ≤ m,

(xi ⊗ yi) ∈ Infn(R(H)⊗R(H′)).

proof. By (1), we know that

Infn(R(H)⊗R(H′)) = (R(H)⊗R(H′))n ∩ (∂ ⊗ ∂′)−1n (R(H)⊗R(H′))n−1.

Let

g = r1(σ1 ⊗ τ1) + · · ·+ rl(σl ⊗ τl)

be an element in

(R(H)⊗R(H′))n ∩ (∂ ⊗ ∂′)−1n (R(H)⊗R(H′))n−1
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where σi ∈ H, τi ∈ H′ and ri ∈ R.
Notice that

(∂ ⊗ ∂′)n(g) ∈ (R(H)⊗R(H′))n−1

and

(∂ ⊗ ∂′)n(σ1 ⊗ τ1) = ∂σ1 ⊗ τ1 + (−1)deg(σ1)σ1 ⊗ ∂′τ1.

Consider the following two cases.
CASE 1. ∂σ1 ∈ R(H)p1−1 and ∂′τ1 ∈ R(H′)q1−1. Then

σ1 ⊗ τ1 ∈ (R(H)⊗R(H′))n ∩ (∂ ⊗ ∂′)−1n (R(H)⊗R(H′))n−1.

Set x1 = r1σ1 and y1 = τ1.
CASE 2. ∂σ1 /∈ R(H)p1−1 or ∂′τ1 /∈ R(H′)q1−1. Without loss of generality, we can assume that ∂σ1 /∈ R(H)p1−1. Then

there exists 0 ≤ k1 ≤ p1 such that dk1(σ1) /∈ R(H)p1−1. Since (∂ ⊗ ∂′)n(g) ∈ (R(H)⊗R(H′))n−1, it follows that∑
{(j,kj)|dkj

(σj)=dk1
(σ1)}

(−1)kjrj = 0,

with τ1 = τj , p1 = pj and q1 = qj . Hence we get a linear combination x1 = (r1σ1 + rjσj + · · · ) of finite hyperedges inH and
y1 = τ1.

By repeating the above process finite times and combing Case 1 and Case 2, the lemma follows.
We give an example to illustrate the form of element in Infn(R(H)⊗R(H′)).
Example 3.1. Let

H = {{v1}, {v3}, {v1, v2}, {v2, v3}, {v1, v3}},
H′ = {{w2}, {w3}, {w1, w2}, {w2, w3}, {w1, w3}}

be two hypergraphs and R = Z.
Let

g = {v1, v2} ⊗ {w2, w3}+ {v1, v3} ⊗ {w1, w3} +{v2, v3} ⊗ {w2, w3} − {v1, v3} ⊗ {w1, w2}+ {v1, v3} ⊗ {w2, w3}.

It can be directly verified that

g ∈ Inf2(R(H)⊗R(H′)),
{v1, v3} ⊗ {w2, w3} ∈ Inf2(R(H)⊗R(H′))

while none of

{v1, v2} ⊗ {w2, w3}, {v1, v3} ⊗ {w1, w3},
{v2, v3} ⊗ {w2, w3}, {v1, v3} ⊗ {w1, w2}

is in Inf2(R(H)⊗R(H′)). But we can express g as

g = ({v1, v2}+ {v2, v3})⊗ {w2, w3}+ {v1, v3} ⊗ ({w1, w3} − {w1, w2}) + {v1, v3} ⊗ {w2, w3},

in which each term

({v1, v2}+ {v2, v3}])⊗ {w2, w3},
{v1, v3} ⊗ ({w1, w3} − {w1, w2}), {v1, v3} ⊗ {w2, w3}

is in Inf2(R(H)⊗R(H′)).
Proposition 3.1. LetH,H′ be two hypergraphs. Then for any n ≥ 0, we have

Infn(R(H)⊗R(H′)) = (Inf∗(R(H))⊗ Inf∗(R(H′))n.
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Proof. By substituting D and D′ with Inf∗(R(H)) and Inf∗(R(H′)) in Lemma 2.1 respectively, we have that

(∂ ⊗ ∂′)n((Inf∗(R(H))⊗ Inf∗(R(H′)))n =
∑(

∂p
(
Infp(R(H))

)
⊗ Infq(R(H′))

+ Infp(R(H))⊗ ∂′q
(
Infq(R(H′))

))
⊆ (R(H)⊗R(H′))n−1.

Moreover,

(Inf∗(R(H))⊗ Inf∗(R(H′)))n ⊆ (R(H)⊗R(H′))n.

Hence

(Inf∗(R(H))⊗ Inf∗(R(H′)))n ⊆ (R(H)⊗R(H′))n ∩ (∂ ⊗ ∂′)n(R(H)⊗R(H′))n−1,

which implies that
(Inf∗(R(H))⊗ Inf∗(R(H′)))n ⊆ Infn(R(H)⊗R(H′)).

On the other hand, for each term

x⊗ y ∈ Infn(R(H)⊗R(H′)), deg(x) = p, deg(y) = q, p+ q = n,

we have that
(∂ ⊗ ∂′)n(x⊗ y) = ((∂px)⊗ y + (−1)px⊗ (∂′qy)) ∈ (R(H)⊗R(H′))n−1.

Then
(∂px)⊗ y ∈ (R(H)⊗R(H′))n−1, x⊗ (∂′qy) ∈ (R(H)⊗R(H′))n−1.

Hence

x ∈ R(H)p ∩ ∂−1p R(H)p−1, y ∈ R(H′)q ∩ ∂′
−1
q R(H′)q−1

and
(x⊗ y) ∈ (Inf∗(R(H))⊗ Inf∗(R(H′)))n.

Hence, by Lemma 3.1,

Infn(R(H)⊗R(H′)) ⊆ (Inf∗(R(H))⊗ Inf∗(R(H′)))n.

The proposition is proved.
We give an example to illustrate Proposition 3.1.
Example 3.2. Consider the hypergraphsH andH′ given in Example 3.1. Then

Inf∗(R(H)) = R
{
{v1}, {v3}, {v1, v3}, {{v1, v2} − {v2, v3}}

}
Inf∗(R(H′)) = R

{
{w2}, {w3}, {w2, w3}, {{w1w2} − {w1, w3}}

}
Inf∗(R(H))⊗ Inf∗(R(H′)) = R

{
{v1} ⊗ {w2}, {v1} ⊗ {w3}, {v3} ⊗ {w2},

{v3} ⊗ {w3}, {v1, v3} ⊗ {w2, w3}, {v1} ⊗ {w2, w3},
{v1, v3} ⊗

(
{w1, w2} − {w1, w3}

)
,(

{v1, v2}+ {v2, v3}
)
⊗
(
{w1, w2} − {w1, w3}

)
,

{v1} ⊗
(
{w1, w2} − {w1, w3}), {v3} ⊗ {w2, w3},

{v3} ⊗
(
{w1, w2} − {w1, w3}

)
, {v1, v3} ⊗ {w2},

{v1, v3} ⊗ {w3},
(
{v1, v2}+ {v2, v3}

)
⊗ {w2},

(
{v1, v2}+ {v2, v3}

)
⊗ {w3}

}
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R(H)⊗R(H′) = R
{
{v1} ⊗ {w2}, {v1} ⊗ {w3}, {v3} ⊗ {w2},

{v3} ⊗ {w3}, {v1, v2} ⊗ {w2}, {v1, v3} ⊗ {w3},
{v1} ⊗ {w1, w2}, {v1} ⊗ {w2, w3}, {v1} ⊗ {w1, w3},
{v3} ⊗ {w1, w2}, {v3} ⊗ {w2, w3}, {v3} ⊗ {w1, w3},
{v1, v2} ⊗ {w1, w2}, {v1, v2} ⊗ {w2, w3},
{v1, v2} ⊗ {w1, w3}, {v2, v3} ⊗ {w1, w2},
{v2, v3} ⊗ {w2, w3}, {v2, v3} ⊗ {w1, w3},

{v1, v3} ⊗ {w1, w2}, {v1, v3} ⊗ {w2, w3}, {v1, v3} ⊗ {w1, w3}
}

Inf∗(R(H)⊗R(H′)) = R
{
{v1} ⊗ {w2}, {v1} ⊗ {w3}, {v3} ⊗ {w2},

{v3} ⊗ {w3},
(
{v1, v2}+ {v2, v3}

)
⊗ {w2},(

{v1, v2}+ {v2, v3}
)
⊗ {w3}, {v1, v3} ⊗ {w2},

{v1, v3} ⊗ {w3}, {v3} ⊗ {w2, w3}, {v1} ⊗ {w2, w3}
{v1} ⊗

(
{w1, w2} − {w1, w3}

)
, {v3} ⊗

(
{w1, w2} − {w1, w3}

)
(
{v1, v2}+ {v2, v3}

)
⊗
(
{w1, w2} − {w1, w3}

)}
Hence,

Inf∗(R(H))⊗ Inf∗(R(H′)) = Inf∗(R(H)⊗R(H′)).

4. A Künneth Formula for the Embedded Homology

By using the embedded homology, we prove a Künneth formula for the tensor product of graded abelian subgroups of chain
complexes, corresponding to Theorem 4.2.

Theorem 4.1 (Algebraic Künneth Formula). ([7, Theorem 3B.5]) Let R be a principal ideal domain, and let C∗, C ′∗ be chain
complexes of free R-module. Then there is a natural exact sequence

0→
⊕
p+q=n

Hp(C∗)⊗R Hq(C
′
∗)→ Hn(C∗ ⊗ C ′∗)→

⊕
p+q=n

TorR(Hp(C∗), Hq−1(C ′∗))→ 0.

Theorem 4.2. Let R be a principal ideal domain. LetH andH′ be two hypergraphs. Then there is a short exact sequence

0 −→ (H∗(H)⊗R H∗(H′))n−→Hn(Inf∗(R(H)⊗R(H′))) −→
⊕
i

TorR(Hi(H), Hn−i−1(H′)) −→ 0.

And this sequence splits.
Proof. By Theorem 4.1, we have a short exact sequence

0 −→(H∗(Inf∗(D,C))⊗R H∗(Inf∗(D′, C ′)))n
ϕ−→ Hn(Inf∗(D,C)⊗R Inf∗(D′, C ′)) −→⊕

i

TorR(Hi(Inf∗(D,C)), Hn−i−1(Inf∗(D′, C ′))) −→ 0.
(5)

And this sequence splits.
By Proposition 3.1,

Hn(Inf∗(R(H))⊗ Inf∗(R(H′))) = Hn(Inf∗(R(H)⊗R(H′))). (6)

The theorem follows from (5) and (6).
Let R be a field F. The next corollary follows from Theorem 4.2.
Corollary 4.1. Suppose the chain complexes C and C ′ consist of graded vector spaces over a field F. Let D and D′ be graded

vector subspaces of C and C ′ respectively. Then

H∗(Inf∗(R(H)⊗R(H′))) ∼= H∗(H)⊗R H∗(H′).
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5. Conclusion
From above discussion, we know that the critical proof of

Theorem 4.2 is that Proposition 3.1 holds, which depends on
Lemma 3.1. Let R be a principal ideal domain. Let C and C ′

be chain complexes consisting of graded free R-modules. Let
D and D′ be graded sub-R-modules of C and C ′ respectively
and the generator sets of D and D′ be subsets of the generator
sets of C and C ′ respectively. Then

Inf∗(D ⊗D′, C ⊗ C ′) = Inf∗(D,C)⊗ Inf∗(D
′, C ′),

which will be proved in our another paper. Hence, the
analogue of Künneth formula of hypergraphs given in this
paper can be extended to the Künneth formula of embedded
homology of graded abelian groups of chain complexes.

Moreover, it is proved that the path homology of digraphs
is consistent with the embedded homology of digraphs [15].
A. Grigor’yan, Y. Lin, Y. Muranov and S. T. Yau studied the
the Künneth formula for the path homology (with coefficients
in a field ) of digraphs [5, 6]. Therefore, we can get the
Künneth formula for digraphs with coefficients in a principal
ideal domain.
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[12] R. Lung, N. Gaskó, M.A. Suciu, A hypergraph model
for representing scientific output. Scientometrics 117 (3)
(2018), 1361-1379.

[13] A. D. Parks and S. L. Lipscomb, Homology and
hypergraph acyclicity: a combinatorial invariant for
hypergraphs. Naval Surface Warfare Center, 1991.

[14] Z. Meng and K. Xia, Persistent spectral based machine
learning (PerSpect ML) for drug design. arXiv
https://arxiv.org/abs/2002.00582, preprint.

[15] Chong Wang, Shiquan Ren, Simplicial Descriptions for
Digraphs and Their Path Homology From the Point of ∆-
sets(in Chiniese). Mathematics in Practice and Theory,
49 (22) (2019), 238-247.


