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Abstract: Malaria is an infectious disease caused by Plasmodium parasite and is transmitted among humans through bites of 

female Anopheles mosquitoes. It is estimated 216 million people suffered from malaria in 2016, with over 400,000 deaths 

mainly in sub-Saharan Africa. A number of control measures have been put in place: most importantly the insecticide treated 

net (ITN) and indoor residual sprayings (IRS) of insecticide. Currently, the emergence and spread of resistance in mosquito 

populations against insecticides is the most common and widely spread .It is also poses a key obstacle to malaria control as 

well as jeopardizing the effects of the most efficient malaria control interventions. A mathematical model that incorporates the 

evolution of insecticide resistance and its impact on endemic malaria transmission i.e., effects of indoor residual sprayings 

(IRS) on the insecticide resistant and sensitive malaria vector strains as a control strategy is incorporated and analyzed. The 

object of the study is to understand qualitatively the factor that have more influence for the emergence and spread of resistance 

of malaria vectors against IRS and their impacts on the efficacy of IRS. Based on a Ross-Macdonald derivation of malaria 

model the effective reproduction number �� isused to assess the effects of IRS in the qualitative analysis of the model. The 

existence and stability of the disease-free and endemic equilibria of the model are studied. It is established that the malaria can 

be brought under control as long as �� is kept below the threshold value. Numerical simulations studies are conducted so as to 

determine the role played by key parameters of the model. The public health implications of the results include: (i) every effort 

should be taken to minimize the evolution of insecticide resistance due to malaria control interventions failure and (ii) at least a 

combination of two types of different control measures and followed by rotation of intervention strategies could be more 

realistic to minimize the number of resistant malaria vector strains and essential in reducing the malaria burden in the 

community. 
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1. Introduction 

Malaria is an infectious disease caused by the Plasmodium 

parasite and is transmitted among humans through bites of 

female Anopheles mosquitoes. Also, it is transmitted more 

infrequently by blood transfusion i.e., needle sharing, surgery 

and births [1]. Among all the diseases those can be transmit 

by mosquitoes, malaria has been and still remains the one 

having the greatest health and socioeconomic impact, from 

the ancient Egypt to present time [2, 3]. 

Nearly half of the world’s population is at risk of Malaria 

disease. In 2016, about 216 million people suffered from malaria 

and among them over 0.4 million people lost their lives. The 

intensity is still more mainly in sub-Saharan Africa [4]. 

The main symptoms of malaria include fatigue, chill, 

headache, abdominal and back pain, diarrhea, sometimes 

vomiting, and fever. 

In recent years global efforts have been made to control 

and eliminate malaria. This effort has lead to a significant 

reduction in malaria cases and mortality at rates of 66% and 

42%in Africa respectively. 

Various techniques have been followed to prevent and cure 

the Malaria disease. Preventive techniques of Malaria disease 

include: the use of insecticide-treated nets ITNs, long-lasting 

insecticidal nets LLINs and indoor residual sprayings IRS [5]. 

Curing techniques of Malaria disease include: Early diagnosis, 

improved drug therapies and better health infrastructure.  

The ‘insecticide resistance’ is defined as the ability of an 
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insect to withstand from the effects of an IRS [7]. Repeated 

exposure to insecticides may make the insects more rapidly 

resistant to or are less sensitive to that. These individual 

survivors could then pass the resistance mechanism to the 

successive generations resulting in the production of more 

resistant insect populations [8]. 

Currently, the resistance against insecticides in mosquito 

populations is emerging and spreading. This face is 

disturbing the effectiveness of the most efficient malaria 

control interventions [6]. 

Insecticide resistant malaria vector strains limits the 

effectiveness of control and intervention strategies. This also 

resulted in higher: malaria morbidity and mortality, increased 

cost of malaria disease management, increased burden on the 

health care facilities, and increased relative malaria incidence 

and parasite infection prevalence within individuals. 

Mathematical modeling of malaria has been flourishing 

since the days of Ronald Ross, in 1911, who was awarded a 

Nobel Prize for his contributions. A simple SI model having 

two compartments namely susceptible and infected is 

developed. This model has a basis on the assumption that at 

any time, the total human population can be divided into 

some distinct compartments. The so called mathematical 

model is used to show that bringing mosquito population 

below a certain threshold is sufficient to eliminate malaria. 

This threshold naturally depends on biological factors such as 

the biting rate and vectors capacity [9]. 

Macdonald G. has developed a model for estimating the 

infection and recovery rates. This model assumes that the 

amount of infective material to which a population is 

exposed remains unchanged. It is shown that the reduction of 

the number of mosquitoes is an inefficient control strategy 

since that had a little effect on the dynamics of malaria in 

areas of strong transmission [9, 10]. 

The Ross – Macdonald developed a reformulated model an 

interaction between infected human hosts and infected 

mosquito vectors that identifies mosquito vector longevity as 

the single most important variable in the force of 

transmission, and combined Ross’s model with 

epidemiological and entomological file data Since then, study 

developed on mosquito-borne pathogen transmission and 

designed strategies for mosquito-borne disease prevention 

[11, 12, 13, 14, 15, 16, 17]. 

The models developed by Aronhave considered that 

acquired immunity to malaria depends on exposure i.e. the 

immunity is boosted by additional infections [18, 19]. 

Recently, Tumwiine, Mugisha and Luboobi have 

developed a compartmental model to formulate the spread of 

malaria, with susceptible – Infected – Recovered - 

Susceptible SIRS pattern for human and Susceptible – 

Infected SI pattern for mosquitoes [20, 21]. 

Yang, Wei and Li have developed a model consisting of 

SIR compartments for human and SI compartments for 

vector populations respectively. The concept of reproduction 

number  ��  is used. Further, the existence and stability of 

disease-free and an endemic equilibria are proposed [22]. 

Fekadu Tadege Kobe and Purnachandra Rao Koya have 

developed a model and shown that the spread of malaria 

disease can be controlled using effective intervention 

strategies [23]. 

Mathematical model is a valuable tool in the study of the 

dynamics of diseases. It provides the abilities of 

understanding and predictions of epidemiological patterns 

and dynamical nature of diseases. 

Ross – Macdonald model focused on only one factor that 

mosquito vector longevity as the single most important 

variable. This variable is used in the force of transmission of 

the disease and strategies for mosquito-borne disease 

prevention.  

Some other important issued missed to consider are:(i) 

complex dynamics of the host-vector interactions (ii) 

evolution of insecticide resistance (iii) factors that influence 

the resistance of malaria vectors against insecticides and (iv) 

the efficacy of control measures. 

In the present model few of the listed factors have been 

incorporated and thus extended the Ross – Macdonald model. 

Here, the human population is compartmentalized as 

susceptible-infective-immune SIR and mosquito population 

is compartmentalized as susceptible-infective SI. Further, the 

infected mosquito population is divided into two classes: (i) 

insecticide sensitive and (ii) insecticide resistant. Also, 

considered that the infection with the insecticide sensitive 

strain will give rise the insecticide resistant strain in the event 

of indoor residual spray IRS fails to kill mosquito vectors. 

2. Model Formulation and Analysis 

2.1. Model Formulation 

In this section, an improved mathematical model for the 

transmission and spread of malaria disease between two 

interacting populations of humans or the host and mosquitoes 

or the vector is developed. This model is an extension of that 

of Ross – Macdonald. 

This model compartmentalizes the total human population 

denoted by ���	
at time 	 into three classes: susceptible���	
, 

infected ���	
 , and immune ���	
  classes. Hence, the total 

human population is given by���	
 = ���	
 + ���	
 + ���	
. 

Similarly, the total mosquito population is divided into two 

classes: Susceptible ���	
  and infectious ���	
 . Further, the 

infected mosquito population classified as: insecticide sensitive 

malaria vectors ���and insecticide resistant malaria vectors ��� . 

Here, the subscripts � and � are added to the vector variables in 

order to specify the sensitive and resistant strains respectively. 

Thus, the total mosquito population at any time 	 is denoted and 

given by ���	
 =  ���	
 + ����	
 +  ����	
. 

The mosquitoes do not have any recovered class since the 

infected mosquitoes remain infectious for whole life. The 

present model ignores super-infections for 

mosquitocompartments and the latent periods of the disease 

for both human and mosquitocompartments. 

The assumptions of the present model include the 

following: Individuals are recruited into the susceptible class 

with a rate of  Λ� due to births and/or immigrations. Both 

insecticide sensitive and infected insecticide resistant malaria 
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vectorsattack susceptible human with the probabilities of 

 �� and �1 � �� 
 respectively [24]. 

In the process, the parasite injects sporozoites into the 

blood and move to the infectious compartment ���	
 . 

Infectious humans recover due to immunity resistance with a 

rate of  � . Since immunity against malaria infection is 

temporary, it is lost at a constant rate  �  and the immune 

humans become susceptible again. All humans are subjected 

to a non-disease related per capita natural death rate �� . 

Additionally, disease related deaths occur with a constantrate 

of��in the infective class. 

In mosquito population the birth rate is considered to be a 

constant Λ� per capita. Thesusceptible mosquito becomes 

infected with a probability  �� from biting infectious 

human  ���	 ). Let a fraction of  � susceptible mosquitoes 

moveto insecticide sensitive malaria vector strains and the 

remaining fraction �1 � � 
  moveto insecticide resistant 

malaria vector strains, where 0 � � � 1. 

The effect of IRS is incorporated solely for the death of the 

mosquito populations. That is, both the susceptible female 

mosquitoes �� and insecticide sensitive malaria vector 

strains ���  are expected to be killed by IRS. The parameter 

� is the rate of removal of mosquitoes from different classes 

associated with IRS. The values of IRSapplied per day ranges 

from 0 to 1. The amount of IRS used is incremented by a 

constant so as to account for a wide range of efficacies and 

compliancesapplicable. 

The evolution of insecticide resistancedue to improper use 

of IRSleading to the control intervention failure is also 

incorporated in the model. Thus, the rate at whichinsecticide 

sensitive malaria vector strains progress to theinsecticide 

resistant malaria vector strains class is considered to be  . All 

mosquitoes are subjected to a non-diseasednatural death 

rate ��per capita. Additionally, disease related death rate is 

considered to be a constant ��  in both the sensitive and 

resistant infective classes. 

2.2. Model Assumptions 

The formulation of the present model is guided by the 

following assumptions: 

(i) The total sizes of both humans and mosquito 

populations are not constant. 

(ii) The mosquito populations cannot be completely 

eliminated and thus there will be ongoing transitions 

of the disease. 

(iii) Insecticideresistant malaria vector strains will affect 

both mosquito populations and the effectiveness of 

control intervention and hence maximizes the 

potential of disease transmission. 

(iv) The emergency of insecticide resistant malaria 

vectorstrainisbased on quality (improper usage) and 

quantity (types) of control interventions. 

(v) Spraying of IRS on the places where mosquitoes 

reproduce and on the home walls leads to the death of 

mosquito populations. 

(vi) On recovery, humans will havetemporary immunity. 

(vii) The number of insecticide resistant vectors will 

increase with time due to the failure of effectiveness 

of IRS on sensitive vectors. 

(viii) The populations in compartmentsof both humans and 

vectors are non-negative and so areall the parameters 

involved in the model. 

(ix) Malaria isactivein a population for a long period of 

time. 

Table 1. Description of state variables. 

State Variable Description 

 S# �t
 Number of Susceptible Humans 

I# �t
 Number of Infected Humans 

R#�t
 Number of Recovered Humans 

S'�t
 Number of Susceptible Mosquitoes 

I'(�t
 Number of Infected insecticide sensitive Mosquitoes 

I')�t
 Number of Infected insecticide resistant Mosquitoes 

Table 2. Description ofmodelparameters. 

Parameter Description 

Λ# Recruitment rate of Susceptible Humans 

Λ' Recruitment rate of Susceptible Mosquitoes 

µ# Natural death rate of Humans 

δ# Disease-induced death rate of Humans 

β# Contact rate of Infective Vector and Susceptible Humans 

� Recovery rate of Infective Humans 

µ' Natural death rate of Mosquitoes 

δ' Disease-induced death rate of Humans 

� Rate of loss of immunity in Humans 

β' 
Contact rate of Susceptible Mosquitoes and Infective 

Humans 

� Rate of prevention of Malaria vector using IRS 

 

Figure 1. Flow of Malaria parasite between Humans and Mosquitoes. 

Based on the model assumptions, description of model 

parameters and the state variables and the flow chart given in 

the Figure 1, the system of model equations can be developed 

as follows: 

-�� -	⁄ 
 Λ� � ��� � /���1 � ��
���� � ���
��0 ��⁄ ����� (1) 

-�� -	⁄ 
 /���1 � ��
���� � ���
��0 ��⁄  � � � � �� � ��
�� (2) 

-�� -	⁄ 
 ��� � ��� �  �
��              (3) 

-�� -	⁄ 
 Λ� � /������0 ��⁄ �  � � � �� 
��  (4) 

-��� -	⁄ 
 //��1 �  
0 ������0 ��⁄ � � � �  ��  �  �� 
��� (5) 

-��� -	⁄ 
 /�1 � �1 �  
�
������0 ��⁄ � � ��  �  �� 
��� (6) 
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-�� -	⁄ = Λ� − ���� − ����            (7) -�� -	⁄ = Λ� − ���� − ����  + ���
 − ������ − ���
 (8) 

With initial conditions ���0
 =  ���, ��0
 =  ��� , ���0
 =  ���, ���0
 =  ���, ���0
 =��2����0
 = ����, ����0
 = ���� , ���0
 = ��� ,       (9) 

2.3. Model Analysis 

2.3.1. Existence and Positivity of Solutions 

In this section, it is shown that the malaria model governed 

by the system of equations (1) to (6) is epidemiologically and 

mathematically well posed. Specifically, the feasible region 

is identified as Ω = 3Ω# × Ω'5 ⊂ 3ℝ89 × ℝ89 5 where :# =;�S#, I#, R#
 ∈ ℝ89 : N# ≤ ?Λ# µ#⁄ @A and Ω' =3�S' , I'(, ���
 B ℝ89 : N' ≤ /Λ' ��⁄ 05. 

Theorem 1 The solution 3�� , �� , ��, �� , ��� ���5 of 

the system of equations (1) to (6) is bounded and contained 

in the domain :. 

Proof: Let the solution of the system of equations (1) to (6) 

together with positive the initial conditions given in (9) are  : =  3S# , I# , R#, S' , I'( ���5 . Also, let  ���	
 =���	
 + ���	
 + ���	
  and ���	
 = ���	
 + ����	
 + ��� . 

Now, in order to show that both the human and mosquito 

populations are bounded it is enough to show that the 

respective two total populations i.e., ���	
 and  ���	
 are 

bounded. 

Boundedness of ���	
: Addition of human compartments 

of the system of equations (1) to (3) leads to-�� -	⁄ =
Λ# − µ#���	
−�����	
 . After dropping the negative 

term−�����	
 appearing on the right-hand side the fore going 

equation can be expressed without loss of generality as an 

inequality as -�� -	⁄ ≤ Λ# − µ#���	
 or equivalentl yas -�� -	⁄ +  µ#���	
 ≤ Λ# . It is a first order linearordinary 

differential equation and has the generals olution  ���	
 ≤?Λ# µ#⁄ @ + CDEF?−µ#t@. Here, the integral constant C takes 

theform, on applying the initial conditions as  C = G��� − ?Λ# µ#⁄ @H . Hence, the complete solution is given 

by  ���	
 ≤ ?Λ# µ#⁄ @ + G��� − ?Λ# µ#⁄ @HDEF?−µ#t@ . Now, 

clearly it can be observed that ���	
 ≤ ?Λ# µ#⁄ @as 	 → ∞ 

and also, according to the initial conditions  ���	
 = �� at 

the initial time	 = 0. Hence, the total human population is 

bounded i.e.��� ≤ ���	
 ≤ ?Λ# µ#⁄ @. 

Boundedness of ���	
 : Addition of mosquito 

compartments of the system of equations (1) to (6) leads 

to - �� -	⁄ = Λ� − ���� − ����  + ���
 − ������ + ���
 . 

After dropping the negative term −����  + ���
 −������ + ���
 appearing on the right-hand side, the fore going 

equation can be expressed without loss of generality as an 

inequality as. -�� -	⁄ ≤ Λ� − �����	
 , or equivalently it 

is -�� -	⁄ +μ'���	
 ≤ Λ�. It is a first order linear ordinary 

differential equation and has the general solution  ���	
 ≤/Λ' μ'⁄ 0 + JDEF/�−μ'
t0. Here, the integral constant Jtakes 

the form, on applying the initial condition, as  J = G��� − ?Λ' µ'⁄ @H . Hence, the complete solution is given 

by ���	
 ≤ ?Λ' µ'⁄ @ + G��� − ?Λ' µ'⁄ @HDEF?−µ't@ . Now, 

clearly it can be observed that ���	
 ≤ /Λ' μ'⁄ 0  as 	 → ∞ 

and also according to the initial condition���	
 = ���at the 

initial time	 = 0 . Hence, the total mosquito population is 

bounded i.e.  ��� ≤ ���	
 ≤ /Λ' μ'⁄ 0. 
Thus, the solutions of the model variables representing 

human populations3���	
, ���	
, ���	
5  are confined in the 

feasible region Ω# = ;�S#, I#, R#
 ∈ ℝ89 : N# ≤ ?Λ# µ#⁄ @A. 

Similarly, the solutions of the model variables representing 

mosquito populations 3��� , ��� ���
5  are confined in the 

feasible region Ω' = 3�S', I'( ���
Bℝ89 : N' ≤ /K� ��⁄ 05 . 

This shows that the feasible region of the model equations (1) 

to (6) is bounded and is given by 

Ω = 3���	
, ���	
, ���	
, ���	
, ����	
 ����	
5 ∈ ℝ8L  

or equivalently Ω = 3Ω# × Ω'5 ⊂ 3ℝ89 × ℝ89 5. 

Positivity of the model equations is verified. The results 

are stated and proved in the form of a theorem as follows: 

Theorem 2: The solutions 3���	
, ���	
, ���	
, ���	
, ����	
 ����	
5  of the 

malaria model given in equations (1) to (6) together with the 

non-negative initial conditions given in (1)are all non-

negative for all 	 > 0. 

Proof: 

Positivity of �� : Consider the equation for susceptible 

humans from the system of equations (1) to (6) i.e. -�� -	⁄ =
Λ� + ��� − /���1 − ��
���� + ���
��0 ��⁄ −���� . After 

dropping the positive terms Λ�  and ���  appearing on the 

right-hand side, the fore going equation can be expressed 

without loss of generality as an inequality  -�� -	⁄ ≥−�� /���1 − ��
���� + ���
0 ��⁄ −����. Also��satisfies the 

boundary condition �� ≤ �K� ��⁄ 
 as showninTheorem1Thus, it can be 

equivalently expressed as: -�� -	⁄ ≥ −��G//���1 − ��
���� + ���
0�� Λ�⁄ 0 +  ��H. It 

is a first order linear ordinary differential equation and has 

the general solution: ���	
 ≥ DEFG��� − G/���1 − ��
����� + ����
�� Λ�⁄ 0 +��H	H ≥ 0. Therefore���	
 ≥ 0 for all	 > 0. 
Positivity of ��: Consider the equation for infected humans 

from the system of equations (1) to (6) i.e. -�� -	⁄ =//���1 − ��
���� + ���
0�� ��⁄ 0 − �� + �� + ��
�� . After 

dropping the positive term /���1 − ��
���� + ���
0�� ��⁄ appearing on the right-hand 

side the fore going equation it can be expressed without loss 

of generality as an inequality -�� -	⁄ ≥ −/� + �� + ��0�� .  It 
is a first order linear ordinary differential equation and has 

the general solution.  ���	
 =  DEF/��� − �� + �� + ��
	0 ≥0.  Therefore ���	
 ≥ 0 for all 	 > 0. 

Positivity of  �� : Consider the equation for recovered 

humans from the system of equations (1) to (6) i.e. -�� -	⁄ = ��� − ��� +  �
�� . After dropping the positive 

term  ��� appearing on the right-hand side the fore going 

equation can be expressed without loss of generality as an 

inequality -�� -	⁄ ≥ −��� +  �
��. It is a first order linear 

ordinary differential equation and has the general 

solution  ���	
 =  DEF/��� − ��� + �
	0 > 0.  Therefore  ���	
 ≥ 0 for all 	 > 0. 

Positivity of  �� : Consider the equation for susceptible 

vector from the system of equations (1) to (6) i.e. -�� -	⁄ =
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Λ� − /������0 ��⁄ − �� +  ��
�� . After dropping the 

positive term Λ�  appearing on the right-hand side, the fore 

going equation can be expressed without loss of generality 

as  -�� -	⁄ ≥ −��G/�� �� N�⁄ 0 + � � + ��H. Since N' ≤K� ��⁄ and hence, it can be equivalently expressed 

as  -�� -	⁄ ≥ −��/����� �� Λ�⁄ 
 + �� + ��
0. It is a first 

order linear ordinary differential equation and has the general 

solution  ���	
 = DEFG��� − G/���� ��� K�⁄ 0 + �� + ��
H	H >0. Therefore ���	
 ≥ 0 for all 	 > 0. 

Positivity of ��� : Consider the equation for insecticide 

sensitive malariavectors from the system of equations (1) to 

(6) i.e. -��� -	⁄ = /��1 −  
������ ��⁄ 0 −  � � + ��  + �� 
��� . After dropping the positive 

term/��1 −  
������ ��⁄ 0 which is appearing on the right-

hand side, the fore going equation can be expressed without 

of loss of generality as-��� -	⁄ ≥ −�� + ��  +  ��
���. It is a 

first order linear ordinary differential equation and has 

solution����	
 = DEF/���� − �� + �� + ��
	0 > 0. Therefore, ����	
 ≥ 0 for all 	 > 0. 
Positivity of ��� : Consider the equation for 

insecticideresistant malaria vectors from the system of 

equations (1) to (6) i.e. -��� -	⁄ = G/1 − �1 −  
�0������H ��⁄ −  � ��  +  �� 
��� . 

After dropping the positive term 3/1 − �1 −  
�0������ ��⁄ 5which is appearing on the right-

hand side, the fore going equation can be expressed without 

loss of generality as-��� -	⁄ ≥ −���  +  ��
��� . It is a first 

order linearordinary differential equation and has the general 

solution  ����	
 = exp/���� − ��� + ��
	0 > 0.  Therefore,  ����	
 ≥ 0for all 	 > 0. 

2.3.2. Existence of Equilibriumpoints 

In this section, the model is analyzed quantitatively by 

investigating the existence and stability of both Disease-free 

equilibrium  R�  and at endemic equilibriumR∗. 

The disease-free equilibrium points of the model are its 

steady state solutions in the absence of infection or disease. 

Consider the disease free-equilibrium points denoted by R� = 3���, ���, �� � , ���, ���� , ���� 5. All the components 

of R� are obtained by setting��� = 0,  ���� = 0 , ���� = 0, ��� =0 in the malaria model equations (1) to (6)and solving the 

resultant equations: -�� -	⁄ = 0 gives ��� = K� �� ⁄  and 

similarly  -�� -	⁄ = 0 gives��� = K� ��⁄ . Thus, R� = 3K� ��⁄ , 0, 0, K� ��⁄ , 0, 05      (10) 

Let the endemic equilibrium point be denoted by  R∗ =3��∗, ��∗, �� ∗ , ��∗, ���∗ , ���∗ 5. It is the non-trivial positive 

equilibrium of the malaria model equations (1) to (6). 

Eachcomponent of R∗ is obtained by setting the right hand 

sides of all equations (1) to (6) equal to zero i.e. Λ� + ��� − /���1 − ��
���� + ���
��0 ��⁄ −����= 0 /���1 − ��
���� + ���
��0 ��⁄ − � � + �� + ��
�� = 0 ��� − ��� +  �
�� = 0 Λ� − /������0 ��⁄ − � � +  ��
�� = 0 /���1 −  
��
����0 ��⁄ −  � � + ��  +  ��
��� = 0 

/�1 − �1 −  
�
������0 ��⁄ − ���  +  ��
��� = 0 

Up on computing the resultant equations as listed above, 

thecomponents of  R∗are obtained as follows: 

��∗ = TU�VU8W
8/WXY�VU8W
� X8VU8ZU
0[U∗VU�VU8W
           (11) 

��∗ = T\�VU8W
]GTUT\� X8VU8ZU
^_̀ HY�a 8 V\
b^_̀ T\̀/�VU8W
� X8VU8ZU
YWX08�VUV\c\
�VU8W
    (12) 

��∗ = X [U∗�VU8W
                              (13) 

��∗ = T\c\[U∗ 8� a 8 V\
                    (14) 

���∗ = T\c\/�dYe
f0�a 8 V\8Z\
Gc\[U∗ 8� a 8 V\
H                 (15) 

���∗ = T\c\/�dY�dYe
f0�V\8Z\
Gc\[U∗ 8� a 8 V\
H                 (16) 

2.3.3. Reproduction Number 

The basic reproduction number denoted by �� is the 

average number of secondary infectious infected by an 

infective individual during his or her whole course of disease 

in case that all of the population are susceptible [25]. This 

helps to check whether an infection will spread through the 

population or die out from the population. 

2.3.4. The Effective Reproduction Number 

The effective reproduction number��  is a key parameter 

that determines the behavior of the model in the presence of 

indoor residual spray IRS. The term ‘effective reproduction 

number’ is used to distinguish it from the basic reproduction 

number � 0. The latter is used when there is no indoor 

residual spray IRS. 

In order to analyze the stability of system 2a-fthe threshold 

condition for the establishment of the disease is required tobe 

obtained. 

Here the effective reproduction number is computed using the 

next generation operator method that is developed by van den 

Driessche and Watmough [26]. A reproduction number obtained 

this way determines the local stability of the disease-free 

equilibrium point with local asymptotic stability for  �� < 1 and 

instability for  �� > 1.  Now let the system be rearranged by 

beginning with the infected classes as follows: Let  h =�I#, I'(, I'), S#, ��, ��
i . Then the new infections be 

distinguished from all other class transitions in the population. 

The infected classes are I#,  I'(and I')among all the classes 

of both human host and mosquito vector. The vector of rates 

of the appearance of new infections in each compartment is 

denoted by j. Further, k =  k8 + kY where k8is the vector 

rate of transfer into the particular compartment and kYis the 

vector rateoftransfer out of the particular compartment. In the 

model equations it is clear that there are three compartments 

for the infected. Thus, 
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j�hl
 =
mnn
nno
���1 − ��
������ + ���
 ��⁄������� ��⁄/1 − �1 −  
�0������ ��⁄000 pqq

qqr and k�hl
 =

mnn
nno

� � + �� + ��
�����  +  �� + s
������ + ��
���000 pqq
qqr 

Now, the matrices j and k at the disease–free equilibrium 

point R�  are defined as j = tu�vw
tvw �R�
and  k = tx�vw
tvw �R�
 . 

After computation they are obtained as 

j = y 0 ���1 − ��
 ���1 − ��
/�1 −  
�0�� 0 0/1 − �1 −  
�0�� 0 0 z 
and 

k = y�γ +  μ#  +  δ#
 0 00 ���  +  �� + �
 00 0 ��� + ��
z 

Note that F is nonnegative, V is a nonsingular matrix whose 

inverse V
−1

, is nonnegative, and the next generation matrix and 

FV
−1

 [25, 26] is nonnegative. The dominant eigenvalue 

corresponding to the spectral radius (FV
−1

) of the matrix 

jkYd =
mnn
nnn
o 0 ���1 − ��
��� + �� + �
 ���1 − ��
��� + ��
/�1 −  
�0���� +  ��  +  ��
 0 0/1 − �1 −  
�0���� +  ��  +  ��
 0 0 pqq

qqq
r
 

jkYd is given by computing the corresponding 

characteristic equationdet�jkYd − }�L
 = 0 which gives the 

effective reproduction numberdenoted andgivenby ��, where 

�� = ~cU�dYcU
G�V\8Z\
?�dYe
f@8�V\8Z\8a
�dY�dYe
f
H� X8VU8ZU
� V\ 8 Z\ 8a
�V\8Z\
   (17) 

The effective reproduction number, �� is defined as the 

number of secondary infections derived from a single 

primary infection in a population of susceptible [26, 27]. Its 

biological meaning is readily interpreted from sum of the 

terms denoted by � D �  and � D � in which 

���  = ~ cU�dYcU
c\?�dYe
f@� X8VU8ZU
� V\ 8 Z\8 a
 and  ��� = ~cU�dYcU
c\/�dY�dYe
f
0� X8VU8ZU
�V\8Z\
  (18) 

If there is no any control strategy i.e., � = 0,  then the 

effective reproduction number  �� for the model equations 

2a-freduces to the basic reproduction number denoted and is 

given by 

�� = ~cU�dYcU
c\G?�dYe
f@8�dY�dYe
f
H� X8VU8ZU
�V\8Z\
            (19) 

2.3.5. Local Stability of the Disease-Free Equilibrium Point 

Here, the stability analysis of the disease-free Equilibrium 

point  R� = 3���, ���, ���, ��� ���� ���� 5  of model 

equations (1) to (6) computing its Jacobian matrix. The 

Jacobian matrix is computed by differentiating the left-hand 

side function of each equation in the system with respect to 

the state variables  � �, � �, � �, � � � �� � �� . That is, 

the followingsystem of modelequations will be considered to 

construct Jacobian matrix and to conduct further analysis. 

The stability analysis and the results are stated and proved 

in Theorem 3. -�� -	⁄ = Λ� + ��� − /���1 − ��
���� + ���
��0 ��⁄ −����  -�� -	⁄ = /���1 − ��
���� + ���
��0 ��⁄  − � � + �� + ��
��  -�� -	⁄ = ��� − ��� +  �
�� -�� -	⁄ = Λ� − /������0 ��⁄ −  � � + �� 
��     -��� -	⁄ = //��1 −  
0 ������0 ��⁄ − � � + ��  +  �� 
���  -��� -	⁄ = G/1 − �1 −  
�0������H ��⁄ −  � ��  +  �� 
���   

Theorem 3: The Disease-free Equilibrium point  R�  is 

locally asymptotically stableif � � < 1 but unstable if � � > 1. 

Proof: 

The Jacobian matrix of the system of equations (1) to (6) 

evaluated at the disease-free equilibrium point R�is given by: 

��R�
 =

mn
nn
nn
nn
nn
o−�� 0 � 0 0 0

0 −�� +  ��  +  ��
 0 0 0 0
0 � −�� +  ��
 0 0 0
0 �� 0 −��� + �
 0 0
0 /�1 −  
�0�� 0 0 −��� + �� + �
 0
0 /1 − �1 −  
�0�� 0 0 0 −��� + ��
pq

qq
qq
qq
qq
r
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In order to prove the statement, it is required to show that 

all the eigenvalues of ��R�
are negative. Since the 

first and fourth, fifth, and sixth columns contain only 

diagonal terms they givefour negative eigenvalues  }d =−μ� ,  }� = −��� + �
 ,  }9 = −��� + �� + �
, }� =−��� + ��
 . The other two eigenvalues can be computed 

from the sub-matrix�d�R�
 formed by excluding the first and 

the third rows and columns of ��R�
. Hence �d�R�
 is given 

by 

�d�R�
 = �−� � + �� + ��
 0
� −�� + ��
� 

Now, the characteristic equation  det/�d�R�
 − }Ι0 =0 takes the form as: 

�−��� + �� + �
 − } 0
� −�� + ��
 − }� = 0 

Also, the characteristic equation can be expressed in a 

quadratic form as  }� + �2�� + �� + � + �
} + ��� + �� + �
�� + ��
 = 0 

Upon solving the quadratic equation, the 5
rd

and 6
th

 

eigenvalues  }� and }Lare obtained as 

}� = − ��2�� + �� + � + �
 + �/�2�� + �� + � + �
� − 4��� + �� + �
�� +  ��
0� 2⁄  

}L = − ��2�� + �� + � + �
 − �/�2�� + �� + � + �
� − 4��� + �� + �
�� +  ��
0� 2⁄  

Here, it can be observed that the eigenvalue }� is absolutely 

a negative. However, the eigenvalue }L is a negative if the 

condition�/�2�� + �� + � + �
� − 4��� + �� + �
�� +  ��
0 2⁄ < 0  
is valid. 

Thus, all the eigenvalues of the Jacobian matrix at the 

disease-free equilibrium ��R�
  arenegative provided that /�2�� + �� + � + �
� − 4��� + �� + �
�� +  ��
0 < 0 if 

and only if
i`^_̀ ���� − ���i`� <  0 for which �� > ��� or equivalently  �� < 1 is valid, Where � =�� +  ��
, � = � ��  +  ��  + �
��� + ��
 

�� = ~cU�dYcU
c\G�V\8Z\
?�dYe
f@8�V\8Z\8a
�dY�dYe
f
H� X8VU8ZU
� V\ 8 Z\ 8a
�V\8Z\
 , � =  �2�� + �� + � + �
 

� = 4���1 − ��
G��� + ��
?�1 −  
�@ + ��� + �� + �
�1 − �1 −  
�
H 

� � + �� + ��
  =  ���1 − ��
��G��� + ��
?�1 −  
�@ + ��� + �� + �
�1 − �1 −  
�
H���� ��  +  ��  + �
��� + ��
  

Therefore, the disease-free equilibrium point is locally 

asymptotically stable if �� < 1 and unstable if � � > 1. 

Theorem 4. If  �� < 1, then the disease free equilibrium 

point  R�  is globally asymptotically stable and unstable. 

if � � > 1. 
Proof: Consider the following Lyapunov function to show 

the global stability of  R�. �/�� , ���� + ���
0 = /��� + ��
�� ���1 − ��
⁄ 0 − ���� + ���
 -� -	⁄ = −/��� + ��
�� ���1 − ��
⁄ 0� � + �� + ��
�� −�x�� + 2��� + ��
���� + ���
+ ���� -� -	⁄ = −G/��� + ��
�� ���1 − ��
⁄ 0� � + �� + ��
− �xH�� + 2��� + ��
���� + ���
 + ���� 

-� -	⁄ ≤ −G/��� + ��
�� ���1 − ��
⁄ 0� � + �� + ��
 −

�xH�� ≤ 0 . Thus, -� -	 ≤ 0⁄ . This is equivalent to  �� <1 from LaSalle’s invariant principle [28]. Therefore, the 

disease-free equilibrium  E�is globally asymptotically stable 

in : if  �� <  1. 

2.3.6. Local Stability of the Endemic Equilibrium Solution 

A disease is endemic in a given population if it continues 

to persistinthat population. The stability of endemic 

equilibrium of the model is studied in the following theorem. 

Theorem5: The endemic equilibrium solution R∗ of the 

model equations (1) to (6) is locally asymptotically stable 

if �� > 1 and unstable if � � < 1. 

Proof: 

let R∗ = 3��∗, ��∗ , ��,∗ ��∗, ���∗ , ���∗ 5 and -D	���R∗
 −}�L
  = ��� �d�� �9� = 0 where 

�� = ��
− ���1 − ��
μ#�I'(∗ + I')∗ 
Λ# − μ# − λ 0 ����1 − ��
μ#����∗ + ���∗ 
Λ� −�� + μ#  +  ��
 − } 00 � −�� + μ#
 − }�� = 0 
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�d = ��
0 − ���1 − ��
����∗���∗Λ� − ���1 − ��
����∗���∗Λ�0 ���1 − ��
����∗���∗Λ�

���1 − ��
����∗���∗Λ�0 0 0 �� = 0 

�� = �
�0 − ������∗K� 0
0 /�1 −  
�0������∗K� 0
0 /1 − �1 −  
�0������∗K� 0�

� = 0 

�9 = �
�− /����∗ + ��� + �
��0K� − } 0 0/�1 −  
�0������∗K� −��� + �� + �
 − } 0/1 − �1 −  
�0������∗Λ� 0 −��� + ��
 − }�

� = 0 

Here, }d = − cU�dYcU
VU�[\�∗ 8[\�∗ 
TU − �� = − �X8 VU 8 ZU
T\[U∗ ^_̀c\[U∗ 8�V\8a
 − �� }� = −�� + ��  +  ��
, }9 = −�� +  ��
 and }�,}�,  and  }L Can be estimatedorcomputed from the 

characteristicequation; that is, }9 + -d}� + -�} + -9                   (20) 

By Using the Routh-Hurwitz criterion, it can be seen that 

all the eigenvalues of the characteristic equation (20) have 

negative real part if and only if-d > 0, -9 > 0 and -d-� >-9[29]. 

Where -d = ��X8 VU 8 ZU
T\[U∗ ^_̀c\[U∗ 8�V\8a
 + ��� + �� + ��  +  ��
 +�� +  ��
 

-� = ��� +  ��  +  ��
K���∗�������∗ + ��� + �
 + ��� �2�� + � + �� +  �
+ �� +  ��
�� + ��  +  ��
 

-9 = ��X8 VU 8 ZU
T\[U∗ ^_̀c\[U∗ 8�V\8a
 + ��� �� +  ��
�� +  ��  +  ��
 

+

�X8 VU 8 ZU
T\[U∗ ^_̀c\[U∗ 8�V\8a
 �� 

Clearly -d and -9 are positive because both of them are a 

sum of positive variables but -d-� > -9 if �X8 VU 8 ZU
T\[U∗ ^_̀c\[U∗ 8�V\8a
 �� <  0  equivalently �� − 1 must be 

positive which leads to �� > 1 . Thus, the endemic 

equilibrium will be locally asymptotically stable if and only 

if �� > 1and unstable if �� < 1. 
3. Simulations and Discussions 

In the present study an SIR-SImodel has been formulated 

and mathematically analyzed. The main objective of this 

study is to understand qualitatively the factors that has more 

impact on the efficacy of the incorporated control strategy for 

the transmission and spread of endemic malaria disease and 

its effectiveness on insecticide resistant and sensitive malaria 

vector strains. Here, simulation study is conducted in support 

of mathematical analysis. Numerical simulation of model 

system equations (1) to (6) is carried out using DE Discover 

Solver. The initial population sizes and a set of parameter 

values are chosen based on similar studies of [30, 31, 32]. 

Graphical representations showing the human and mosquito 

populations with and without control measure (IRS)are 

provided in Figures (2) – (3). And variations in reproduction 

numbers with respect to contact rate between the infected 

humans and the infected mosquitoes are provided in Figures 

(4) –(6). Since values of someparametersare not available in 

the real world, data from literature is used for some 

parameters and for others estimated values are assigned. 

Table 3 and 4show the values assigned tostate variables and 

parametersrespectively and these values have been used in 

conducting simulations study. 

Table 3. Estimated values of state variables. 

State variable Initial value Source S� 300 [30, 31, 32] I� 1 [30, 31,32] R� 0 [30, 31, 32] �� 250 [30, 31, 32] I�� 4 Estimated I�� 2 Estimated 
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Table 4. Estimated values of parameters. 

Parameter Value Source 

Λ� 0.0280 [30] 

µ� 0.0000391 [30] 

�� 0.00040 [30] 

β� 0.4500 Estimated 

Λ� 50.000 Estimated 

µ' 0.04000 [30] 

δ' 0.1000 [30] 

β� 0.2150 Estimated 

� 0.0140 Estimated 

� 0.2050 [30] 

� 0.5000 Estimated 

  0.2000 Estimated 

� 0.3000 Estimated 

 

(a) 

 

(b) 

Figure 2. Human and Mosquito populations with no control measure (IRS). 
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Figure 2 presents typical solution plots for the human 

populations and the mosquito populations. As the individuals 

leave one class for another, the curves change accordingly. 

Once the curves level off, we stop the simulation as the 

populations reached equilibrium. With no intervention 

strategy that is, when IRS =0, the final infected human 

populations is non-zero; however, infected human 

populations smaller than the susceptible and recovered 

classes of human populations. Since the populations are non-

zero, malaria has not been eradicated at the equilibrium state. 

For the mosquito classes, notice that the equilibrium state 

contains nearly almost an equal number of infected 

insecticide (IRS) resistant mosquito strains as susceptible 

mosquitoes while the infected insecticide sensitive mosquito 

strains are less in number than the insecticide(IRS) resistant 

mosquito strains. It is important to note that, here, the built in 

DE Discover solver will find a stable solution, which may 

have a dependence on initial conditions, if the system has 

more than one steady state. 

 
(a) 

 

(b) 

Figure 3. Human and Mosquito, and mosquito populations with control measure (IRS). 

Figure 3 showthat the human and mosquito populations 

(top) and the mosquito populations separately (bottom) as a 

function of time. Thesefiguresare created using initial 

conditions from the Table 3, using the parameter values in 

Table 4. When IRS=0.5. The equations were solved in DE 

Discover solvers. Unlike Figure 2, In each mosquito 



 American Journal of Applied Mathematics 2020; 8(3): 158-170 168 

 

populations classes therehas been seen a reduction of their 

numbers relatively. This is due to the fact that removal of 

mosquitoes from the different classes associated with IRS. 

Since the human populations are non-zero, malaria has not 

been eradicated at the equilibrium state. This phenomenon is 

due to the fact that the mosquito population becomes so small 

that the birth rate of humans greater than the death rate. 

 

Figure 4. Indoor Residual SprayIRS VS Effective Reproduction number ��graph. 

These plots show the effect of IRS on effective reproduction number, ��as a function of IRSand where IRS= 0.97. Notice 

that the reproductive number drops below one for IRSbetween 0.85 and 1. 

 

Figure 5. Indoor Residual SprayIRS VS Reproduction number for the Resistant malaria vector strains���graph. 
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Figure 5 shows that the effect of IRSonthe reproduction numberofinsecticidesresistant malaria vector strains,  ��� as a 

function of IRSandwhere IRS= 0.97. Notice that the reproductive number drops below one for IRSbetween 0.75 and 1. 

 

Figure 6. Indoor Residual SprayIRS VS Reproduction number for the sensitive malaria vector���graph. 

Figure 6 shows that the effect of IRS on the reproductive 

number of insecticide sensitive malaria vector strains, ���as a 

function of IRSand where IRS= 0.97. Notice that the 

reproductive number drops below one for IRS between 0.65 

and 1. 

4. Conclusion and Recommendation 

In our analysis of the modeling the dynamics of endemic 

malaria transmission with the effects of control measure (IRS), 

we ran a number of simulations using the initial population 

sizes and a set of parameter values in Table 3 and Table 4 

respectively in this model. Where IRS, is ranging from 0 to 1. 

We have seen that as the use IRS increases in amount, the 

reproductive number gets closer to 1, eventually falling below 

that critical value. As the evolution of insecticide resistance 

that allows for small proportion of mosquitoes possessing 

resistance genes allowing them to resist and survive the effects 

of the insecticide (IRS) increases, the change in reproduction 

number of resistant malaria vector strains ���  against 

insecticide is clearly seen. This consequently resulted in 

increasing the overall effective reproduction number  �� . 

Because of only single insecticide (IRS) is used during 

intervention and (IRS) is not properly used at a time i.e., the 

same control measure is used for long periods without 

followed by rotation of different types of control measures, 

insecticide sensitive malaria vector strains progress to the 

insecticide resistant malaria vector strains. This also leads to an 

increase in reproduction number of insecticide resistant 

malaria vector strains ��� , consequently increasing the overall 

effective reproduction number ��  which is resulted in control 

intervention failure which also resulted in malaria disease 

burden in the community. 

The public health implications of the results include: (i) 

every effort should be taken to minimize the evolution of 

insecticide resistance due to malaria control interventions 

failure and (ii) ) at least the combination of two different 

types of control measures and followed by rotation of 

intervention strategies could be more realistic to minimize 

the number of resistant malaria vector strains and essential in 

reducing the malaria disease burden in the community. 
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